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This document provides supplementary details about our derivations and

implementation of the main paper. ğ 1 describes the reference (explicit)

constructions of the constraint Jacobian, together with the normal vector.

We then use these descriptions to detail our derivations (and simplifications)

of the change-of-basis tensor in ğ 2. We also prove in ğ 3 that the first

eigenvalue (Eq. (18) in the paper) is always positive, and that remaining

eigenvalues (Eq. (19) in the paper) are always negative. ğ 4 describes the

intermediate steps we use to arrive at the eigenpairs of our mollified barrier

Hessian. In ğ 5, we provide a summary of the analysis conducted on the

friction Hessian, which is followed by supplementary implementation details

of our global matrix-free PCG solver in ğ 6. Supplementary unit test results

are provided in ğ 7. We also provide a comparison of our barrier method

and the original formulation on the same hardware (CPU) in ğ 8. Further

supplemental results concerning different linear solvers and the impact of

friction-Hessian projection on overall performance are provided in ğ 9 and

ğ 10, respectively.
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1 EXPLICITLY CONSTRUCTING JACOBIANS

In this section, we describe the reference method for explicitly com-

puting the constraint Jacobian J(x, 𝑑) and the normal vector n(x) for
a given contact pair (see also Fig. 1). Several of the constructions we

will describe can be found throughout literature (see e.g. [Kane et al.

1999; Müller et al. 2015; Sifakis and Barbic 2012]) but we provide

them here for self-containment.

Vertices of a contact pair form a simplex, with which we measure

distance 𝑑 via a matrix F(x, 𝑑) = E(x)Ē(x, 𝑑)−1, where the terms

defining this F denote the ideal- Ē and current-shape E matrices

of the simplex, respectively. In what follows, we will show how to

compute E and Ē for each possible simplex/contact-pair.
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1.1 Point-triangle

The point-triangle case represents a tetrahedron, where the variables

constituting the matrix F are

E =

[
x2 − x1 |x3 − x1 |x4 − x1

]
∈ IR3×3

Ē =

[
x̄2 − x̄1 |x̄3 − x̄1 |x̄4 − x̄1

]
∈ IR3×3 .

We construct Ē with

x̄1 = x1 +
(
𝑑 − 𝑑

)
n, x̄𝑖 = x𝑖 , 𝑖 = 2, 3, 4

where n is the triangle normal

n =
(x3 − x2) × (x4 − x2)
∥(x3 − x2) × (x4 − x2)∥

∈ IR3×1, (1)

and 𝑑 = v · n is the distance between the point x1 and triangle x2,

x3, x4 using v = x1 − x2.

1.2 Edge-edge

The edge-edge case also represents a tetrahedron, where E and Ē are

constructed like the point-triangle case. However, the ideal shape

positions are now

x̄1 = x1, x̄2 = x2,

x̄3 = x3 +
(
𝑑 − 𝑑

)
n, x̄4 = x4 +

(
𝑑 − 𝑑

)
n,

where the normal is computed as in Eq. (1) but using the edge

vectors, and with 𝑑 = v · n representing the distance between these

edges using v = x3 − x1.

1.3 Point-edge

The point-edge case represents a triangle, with a non-square F con-

structed with

E =

[
x2 − x1 |x3 − x1

]
∈ IR3×2

Ē =

[
x̄2 − x̄1 |x̄3 − x̄1

]
∈ IR2×2,

We can compute Ē by projecting vertex components to the plane

x̄1 = KH
(
x1 +

(
𝑑 − 𝑑

)
n𝑒

)
, x̄2 = KHx2, x̄3 = KHx3,

where the in-plane edge normal n𝑒 (n𝑒 ⊥ x2x3) is given by

n𝑒 =
(x2 − x3) × n𝑡
∥(x1 − x2) × n𝑡 ∥

∈ IR3×1,

with n𝑡 denoting triangle normal computed as in Eq. (1) but using

x1, x2 and x3. The matrix H ∈ IR3×3 represents a rotation to align

the triangle to a canonical axis plane, e.g. with normal n𝑡 = (0, 1, 0).

HTTPS://ORCID.ORG/0000-0001-9147-2289
HTTPS://ORCID.ORG/0000-0001-9489-8592
HTTPS://ORCID.ORG/0000-0003-4446-1442
HTTPS://ORCID.ORG/0000-0002-2729-5860
https://orcid.org/0000-0001-9147-2289
https://orcid.org/0000-0001-9489-8592
https://orcid.org/0000-0003-4446-1442
https://orcid.org/0000-0002-2729-5860


2 • Huanget al.

Fig. 1. The primitive contact pairs that are tested for intersection. From left to right, we have point-triangle (tetrahedron); edge-edge (tetrahedron);

point-edge (triangle); and point-point (line-segment). In each case, the vertices can be seen as forming a simplex with which we formulate an

impermeable barrier energy using a Jacobian (matrix) constructed from these vertices.

Several methods exist to determine this rotation with one example

being Rodrigues’ formula [Murray et al. 1994] from which we get

H =




2
(p+b) (p+b)𝑇
(p+b)𝑇 (p+b) − I p ≠ −b



−1 0 0

0 −1 0

0 0 1



otherwise,
(2)

where p ≔ n𝑡 , b =

[
0 1 0

]𝑇
and K ∈ IR2×3 is a matrix (subject

to our choice of b) to extract the 𝑥𝑧 components of a 3D vector

K =

[
1 0 0

0 0 1

]
.

Finally, 𝑑 = v · n𝑒 is the distance between point x1 and edge x2x3
using v = x1 − x2.

1.4 Point-Point

The point-point case reduces to a line segment and where the Jaco-

bian is a vector. We have

E = v ∈ IR3×1 and Ē =

[
x̄2 − x̄1

]
∈ IR, (3)

where v = x2 − x1, and

x̄1 = KH
(
x1 +

(
𝑑 − 𝑑

)
n
)
∈ IR and x̄2 = KHx2 ∈ IR,

where n =
v
∥v∥ is the normal, and the rotation H is constructed

similarly to Eq. (2) i.e. as one which aligns n to the canonical 𝑦-axis

of (0, 1, 0). Assuming the same choice for the vector b as above,

the matrix K =

[
0 1 0

]
now extracts the 𝑦-component of a 3D

vector. Thus, 𝑑 = v · n = ∥n∥ = ∥v∥.
In all cases above, we have KHn as the normal vector used to

evaluate the gap function, using n𝑒 for the point-edge case.

2 CHANGE-OF-BASIS TENSOR

This section outlines how we compute the change-of-basis tensor
𝜕F
𝜕x ∈ IRdims(F)×3s from a contact pair comprised of 𝑠 vertices. This

tensor can be understood as a column vector with block entries of

dimensions dims(F) ≡ IR
3×m for an𝑚-dimensional simplex.

Definition. The general expression defining the change-of-basis

tensor is given by

𝜕F

𝜕x
=

𝜕E

𝜕x
Ē−1 + E 𝜕Ē

−1

𝜕x
, (4)

where Ē(x(𝑡)) is our so-called ‘ideal’ configuration matrix which

varies unlike the case of hyperelastic materials where the analogous

reference shape matrix is constant1. This variation is evaluated with

the identity

𝜕Ē−1

𝜕x𝑖
= −Ē−1 𝜕Ē

𝜕x𝑖
Ē−1,

and is computed w.r.t the𝑚 vertices in the stencil of a contact pair.

It is worth noting that the second term E 𝜕Ē−1
𝜕x𝑖

of Eq. (4) has been

observed to be negligible during the conducted empirical trials.

Higher order derivatives. The second order derivative 𝜕2
(
Ē−1

)
/𝜕x2

exists too since the analytic expressions of some entries in Ē are

dependent on the normal vector n(x) that is computed from the

cross-product between edge-vectors. This is also the reason why

our local force Jacobian (Eq. (15) in the paper) is dependent on

𝜕2F/𝜕x2 (𝜕2J/𝜕x2 in the paper), which intuitively captures higher-

order variations in Ē due to a changing normal vector n(x) w.r.t
positions.

2.1 Relationship between F and J

The contact constraint Jacobian J ≡ S that we use in the paper

can be viewed as corresponding to the stretch factor of the matrix

F = RS from polar decomposition2. This decomposition yields a

rotation R and symmetric stretch S = VΣV𝑇 , both of which will be

diagonal in our method with R = U = V = I due to the compressive

distortion assumption of the simplex along the vector −n(x) as
outlined in Figure 2 of the paper. In general, either F or J can be used

to define the barrier function𝑏, its gradient 𝜕𝑏/𝜕x and force Jacobian
𝜕2𝑏/𝜕x2: The dimensions of the local force vector and force Jacobian

matrix will be equal in either case, which can be demonstrated by

applying tensor vectorization (e.g. on either Eq. (13) or Eq. (15) in

the paper) to show that tensor contraction in the derivatives will

cancel out differences in the dimensions between F and J for a given

𝑚-dimensional simplex with x ∈ IR3s×1. The change-of-basis tensor
𝜕J/𝜕x is computed w.r.t the explicit entries in the diagonal structure

of J.

1See also the element rehabilitation scheme of Kim et al. [2019].
2It is likewise possible to take the perspective of singular value decomposition F =

UΣV𝑇 from which J = Σ since the method outlined in the paper may be viewed as
working in the local principal stretch space of the deforming simplex along −n.
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ALGORITHM 1: Warp reduction for matrix-vector multiplication.

for each thread, thread_id do

/* Variable initialization */

shared offset;

H_dims← m2 // Total entries per Hessian ∈ IRm×m
H_id← thread_id

H_dims
// Hessian index

R_id← thread_id%H_dims
𝑚

// Hessian row index

C_id← (thread_id%H_dims)%m // Hessian col index

v_id← C_id
3

// Vertex index in Hessian

vc_id← C_id % 3 // vertex component index

e_id← thread_id%m // Entry index in Hessian row

h← load(H_id, R_id, C_id, . . .) // Hessian entry value

// component of vector multiplied with Hessian

c← load(v_id, vc_id, . . .) ;
r← c · h // scalar multiplication result

if thread_id == 0 then
offset← (m − e_id);

end

/* Wait for ‘offset’ initialization */

barrier();

B_id← thread_id−offset+m
m

// Hess row index in block

// Re-calibrated offset of 1st full Hessian row

l_id← (thread_id − offset)%m ;

if B_id == 0 then

l_id← thread_id;

end

w_id← thread_id%32 // Warp index

// is 1st thread after boundary

is_boundary← (l_id == 0) | | (w_id == 0) ;
// set the bit value of mark according to boundary

mark← cudaBrev(cudaBallot(is_boundary)) ;
// length of reduction range in warp

interval← cudaClz(mark«(w_id + 1)) ;
// clamp to warp size

interval← min(interval, 31 − w_id) ;
/* warp reduction (accumulate ’r’) */

iter← 1;

while iter <𝑚 do

// read value ’r’ of neighbour(s) in warp

tmp← cudaShfldown(r, iter) ;
if interval ≥ iter then

r += tmp

end

iter ń= 1 // bitshift

end

// only 1st thread after boundary will write

if is_boundary then

addToOutputArray(r) // write using atomics

end

end

3 EIGENVALUE PROPERTIES

This section provides the proof showing that only the first eigen-

value 𝜆1 (cf. Eq. (18) and Eq. (19) in the paper) is ever positive for the

standard contact pairs i.e. those not representing the nearly-parallel
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Fig. 2. A plot of Eq. (5) in the paper and its derivatives, where 𝑑 = 1.
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Fig. 3. A plot of Eq. (6) in the paper, where 𝑑 = 1.

case. We have used Eq. (12) in the main paper to obtain

𝜆1 =
2𝑑4 (6𝑔 + 2𝑔 ln(𝑔) − 7𝑔2 − 6𝑔2 ln(𝑔) + 1)

𝑔
, (5)

𝜆2,3 =
−2𝑑4 (𝑔 − 1) (𝑔 + 2𝑔 ln (𝑔) − 1)

𝑔2
, (6)

as the expanded expressions that we use for our proof. We would

arrive at different expressions for 𝜆1,2,3 if we instead used Eq. (24)

in the paper but the behaviour (plots) remains the same.

𝜆1 is always positive. Since our gap function 𝑔 ∈ (0, 1) has limited

range, we have

lim
𝑔→0+

𝜆1 = +∞ (7)

lim
𝑔→1

𝜆1 = 0, (8)

where the condition 𝜆1 ≥ 0 is always true (Fig. 2a).

Proof. The first eigenvalue 𝜆1 is monotonically decreasing, which

we demonstrate using the 1st derivative of Eq. (5)

𝜕𝜆1

𝜕𝑔
=
−2𝑑4 (13𝑔2 − 2𝑔 + 6𝑔2 ln(𝑔) + 1)

𝑔2
. (9)

Eq. (9) is always negative (Fig. 2b) which is inline with our obser-

vation in Eq. (8) that 𝜆1 is ever decreasing from positive to zero as

𝑔 → 1. Therefore, 𝜕𝜆1
𝜕𝑔 < 0 is always true, which means 𝜆1 > 0 is

also true when 𝑔 ∈ (0, 1). □

𝜆2,3 are always negative. The second eigenvalue 𝜆2 and third

eigenvalue 𝜆3 are always less than zero when 𝑔 ∈ (0, 1).
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Proof. Eq. (6) has an odd number of terms which are less-than

or equal-to zero

𝑔 − 1 ≤ 0,

𝑔 + 2𝑔 ln(𝑔) − 1 ≤ 0,

−2𝑑4 ≤ 0. (10)

Thus, we have 𝜆2,3 ≤ 0, which is also shown in Fig. 3.

□

Eq. (7)-Eq. (10) summarise why exactly one eigenpair is sufficient

to guarantee positive semi-definiteness for minimizing our barrier

energy.

4 APPROXIMATE MOLLIFIED HESSIAN TERMS

This section summarises of the steps to derive Eq. (32) in the paper

(ğ 4.1), and the steps we follow to arrive at the eigensystem of the

last two terms of our mollified barrier Hessian (ğ 4.2).

4.1 Eigenvectors of the first two terms

We follow the approach outlined in [Kim et al. 2019], to arrive at

the eigenpairs

𝜆𝛾1 = 2

(
𝜕𝑏

𝜕𝛾
+ 2𝛾 𝜕

2𝑏

𝜕𝛾2

)

, Q𝛾1 =
1
√
𝛾
Jn𝛾n

𝑇
𝛾 .

where

Q𝛾1 =
1
√
𝑐



1 0 0

0
√
𝑐 0

0 0 𝑓





0 0 0

0 1 0

0 0 0


= n𝛾n

𝑇
𝛾

is the expansion from which we get the expression used in the paper.

Similar steps are followed to obtain 𝜆𝑔1 and Q𝑔1 = n𝑔n
𝑇
𝑔 .

For the eigenpairs

𝜆𝛾2,𝛾3 = 2
𝜕𝑏

𝜕𝛾
, Q𝛾2,Q𝛾3,

we use the twist matrices from Smith et al. [2019]

T𝑥 =



0 0 0

0 0 1

0 −1 0


, T𝑦 =



0 0 −1
0 0 0

1 0 0


, T𝑧 =



0 1 0

−1 0 0

0 0 0


,

to arrive at

Q𝛾2 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 (UT𝑥ΣV𝑇 n𝛾n𝑇𝛾 ), (11)

Q𝛾3 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 ((𝜎𝑦𝑎𝑦UT𝑧 − 𝜎𝑧𝑎𝑧UT𝑦)ΣV𝑇 n𝛾n𝑇𝛾 ), (12)

using SVD J = UΣV𝑇 , where 𝜎𝑦,𝑧 are the second and third singular

values from Σ, and 𝑎𝑦,𝑧 are the entries of the vector V𝑇 n𝛾 . We also

have U = V = I due to the special diagonal structure of J from which

Q𝛾2 and Q𝛾3 can be simplified as

Q𝛾2 =



0 0 0

0 0 1

0 −1 0


n𝛾n

𝑇
𝛾 , Q𝛾3 =



0 1 0

−1 0 0

0 0 0


n𝛾n

𝑇
𝛾 .

Similarly, we can get Q𝑔2 and Q𝑔3 by

Q𝑔2 =



0 0 0

0 0 1

0 −1 0


n𝑔n

𝑇
𝑔 , Q𝑔3 =



0 0 1

0 0 0

−1 0 0


n𝑔n

𝑇
𝑔 .

4.2 Eigenpairs of the last two terms

We arrive at 𝜆7Q7 and 𝜆8Q8 in the paper with

𝜕2𝑏

𝜕𝛾𝜕𝑔
vec

(
𝜕𝑔

𝜕J
⊗ 𝜕𝛾

𝜕J

)
+ 𝜕2𝑏

𝜕𝑔𝜕𝛾
vec

(
𝜕𝛾

𝜕J
⊗ 𝜕𝑔

𝜕J

)
=

𝜕2𝑏

𝜕𝛾𝜕𝑔
g𝑔g

𝑇
𝛾 +

𝜕2𝑏

𝜕𝑔𝜕𝛾
g𝛾g

𝑇
𝑔 =



0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 4𝑡

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 4𝑡 0 0 0 0



, (13)

which is an expansion of the last two terms of the mollified barrier

Hessian, where g∗ = vec(𝜕(∗)/𝜕J) with ∗ being a placeholder for

𝛾 or 𝑔. We obtain the closed-form expressions of the eigenpairs by

analysing this matrix in Eq. (13) as an eigenproblem.

We arrive at our expressions for 𝜆′
7
Q′
7
and 𝜆′

8
Q′
8
in the paper by

solving an eigenproblem on the auxiliary matrix

M = 𝜆𝛾1vec
(
Q𝛾1

)
vec

(
Q𝛾1

)𝑇 + 𝜆𝑔1vec
(
Q𝑔1

)
vec

(
Q𝑔1

)𝑇

+ 𝜆7vec (Q7) vec (Q7)𝑇 + 𝜆8vec (Q8) vec (Q8)𝑇

=



0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 𝜆𝛾1 0 0 0 4𝑡

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 4𝑡 0 0 0 𝜆𝑔1



, (14)

based on the fact that the mollified Hessian is defined as

vec

(
𝜕2𝑏

𝜕J2

)

≡ M +
∑︁

𝑖=𝛾2,𝛾3,𝑔2,𝑔3

𝜆𝑖vec (Q𝑖 ) vec (Q𝑖 )𝑇 , (15)

The non-orthogonal eigenmatrices Q𝛾1, Q𝑔1, Q7, Q8 lie in the sub-

space represented by Q′
7
and Q′

8
, which we determine by solving

an eigenproblem onM.

5 ANALYSIS OF FRICTION HESSIAN

This section provides a summary of the analysis conducted on the

Hessian of the smooth friction model, as proposed by [Li et al.

2020]. The model uses a ‘lagged’ sliding basis, where contact force

is computed using some quantities that are computed at the last

time step. Specifically, the formulation of the local friction force is

𝐹𝑘 (x, 𝜆𝑛𝑘 , 𝑻
𝑛
𝑘
, 𝜇) = −𝜇𝜆𝑛

𝑘
𝑻
𝑛
𝑘
𝑓1 (∥u𝑘 ∥)

u𝑘
∥u𝑘 ∥

, (16)

where 𝜇 denotes the friction coefficient, 𝑘 here denotes the collision

pair index, u𝑘 = 𝑻
𝑛
𝑘
𝑇 x𝑟

𝑘
∈ IR2×1, x𝑟

𝑘
is the relative displacement of

𝑘-th collision pair, while 𝜆𝑛
𝑘
and 𝑻

𝑛
𝑘
∈ IR3s×2 represent the sliding
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basis and contact normal force derived from the previous time step

that we refer to by the superscript 𝑛 here. The function denoted

here by 𝑓1 will provide a smooth and monotonic transition from 0

to 1 over a finite range

𝑓1 (∥u𝑘 ∥) =
{
− ∥u𝑘 ∥

2

𝜖2𝑣Δ𝑡
2
+ 2∥u𝑘 ∥

𝜖𝑣Δ𝑡
, ∥u𝑘 ∥ ∈ (0,Δ𝑡𝜖𝑣)

1, ∥u𝑘 ∥ > Δ𝑡𝜖𝑣
, (17)

which is also detailed in [Li et al. 2020]. This leads to the correspond-

ing friction potential

𝐷𝑘 (x) = 𝜇𝜆𝑛
𝑘
𝑓0 (∥u𝑘 ∥). (18)

Here, 𝑓0 is defined such that 𝑓 ′
0
= 𝑓1 and 𝑓0 (𝜖𝑣ℎ) = 𝜖𝑣Δ𝑡 so that

𝐹𝑘 (x) = −∇x𝐷𝑘 (𝑥). The Hessian of 𝐷𝑘 (x) can be simply given by:

∇2x𝐷𝑘 (x) = 𝜇𝜆𝑛
𝑘
𝑻
𝑛
𝑘

(
𝑓 ′
1
(∥u𝑘 ∥)∥u𝑘 ∥ − 𝑓1 (∥u𝑘 ∥)

∥u𝑘 ∥3
u𝑘u

𝑇
𝑘

+ 𝑓1 (∥u𝑘 ∥)∥u𝑘 ∥
I2

)
𝑻
𝑛𝑇
𝑘
∈ IR3s×3s .

(19)

where I2 is a 2 × 2 identity matrix. Eigenanalysis of the Hessian

in Eq. (19) essentially boils down to the analysis of a simple 2 × 2
matrix,

𝑓 ′
1
(∥u𝑘 ∥)∥u𝑘 ∥ − 𝑓1 (∥u𝑘 ∥)

∥u𝑘 ∥3
u𝑘u

𝑇
𝑘
+ 𝑓1 (∥u𝑘 ∥)
∥u𝑘 ∥

I2, (20)

which can be accomplished by analytically solving a quadratic char-

acteristic polynomial.

6 DATA-PARALLEL SOLVER

This section provides the high level information (and algorithm) that

we use to parallelise our GPU implementation of preconditioned

conjugate gradients (PCG) [Shewchuk 1994] without constructing

the full system matrix. This scheme has been adopted previously,

e.g. by Gao et al. [2018] andWang et al. [2020], where our novelty lies

in the parallel optimization of local matrix-vector multiplications.

The remaining vector-vector multiplications of PCG is optimized

with the global reduction methods of Zhao et al. [2020].

The traditional approach to solving the global linear system re-

quires prior construction/assembly of a (sparse) system matrix,

which involves incrementally adding contributions into its block en-

tries from the local Hessians [Baraff and Witkin 1998; Tamstorf et al.

2015]. This is especially suitable for elastic deformation problems

with finite elements or mass-spring systems where mesh topology is

fixed to allow pre-computation of the non-zero entries/indices in the

global matrix. In our case the time-dependent nature of the number

of IPC barrier energy terms precludes such pre-computation to af-

fect the cost of booking-keeping for tracking dynamically-changing

sparse matrix indexing offsets.

Decomposing system matrix-vector multiplication. It is possible to

avoid such global construction by decomposing system matrix back

to the local form using the distributive property of addition, which

we use and can be demonstrated using a simple 2D mass-spring

system with three nodes and two springs. Fig. 4 shows two springs

x1

x2

x3

Spring - A Spring - B

Fig. 4. Mass spring system with two springs

endowed with a (local system) matrix each

A =

[
A11 A12

A21 A22

]
≡ 𝜕2Ψ𝐴

𝜕x2
, (21)

B =

[
B11 B12
B21 B22

]
≡ 𝜕2Ψ𝐵

𝜕x2
, (22)

which correspond to their energies Ψ𝐴 and Ψ𝐵 , respectively, with

block entries A𝑖 𝑗 ,B𝑖 𝑗 ∈ IR
2×2. The global system matrix may be

constructed as follows:



A11 A12 0

A21 A22 0

0 0 0

︸               ︷︷               ︸
A

+


0 0 0

0 B11 B12
0 B21 B22

︸              ︷︷              ︸
B

=



A11 A12 0

A21 A22 + B11
0 B12 B22

︸                          ︷︷                          ︸
H

,

with dimensions H ∈ IR6×6 which is based on the connectivity of

the system.

Two springs sharing one vertex will result in a summation of two

specific block entries fromA and B, which are determined by a local-

to-global index map. This map, which is constant, is based on the

connectivity of the mass spring system, where ‘local’ refers to node

indices in a spring versus the ‘global’ indices in the mass-spring

system3. Thus, we have

Hc = (A + B)c,
= Ac + Bc ∈ IR6×1, (23)

with c =
[
c1 c2 c3

]𝑇
and c𝑖 ∈ IR2×1 to give



A11c1 + A12c2
A21c1 + (A22 + B22) c2 + B23c3

B32c2 + B33c3


= Hc = c′.

where the vector c is synonymous with the variable defined in Line

(5) of the ‘modified-pcg’ Algorithm of Baraff and Witkin [1998]. The

global solution c′ can be decomposed into local solution vectors
[
A11 A12

A21 A22

] [
c1
c2

]
=

[
A11c1 + A12c2
A21c1 + A22c2

]
= c′a, ∈ IR2×1 (24)

and
[
B11 B12
B21 B22

] [
c2
c3

]
=

[
B11c2 + B12c3
B21c2 + B22c3

]
= c′

b
∈ IR2×1 . (25)

3Note that the same analogy carries through when dealing with contact using our IPC
formulation: a collision between two surface boundary elements (e.g. a point and an
triangle) will form simplex from which we construct our barrier function, its gradient
and Hessian. A vertex will have a local index in the simplex and a global index in the
respective mesh(es) in contact.
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Fig. 5. Warp reduction for parallel dense matrix-vector multiplication (see also Algo. (1)).

to give c′ =
[
c′a1

(
c′a2 + c

′
b1

)
c′
b2

]𝑇
as the basis upon which

we build our implementation of the local system matrix-vector

multiplications during PCG. So if the local solution vectors c′a and
c′
b
are computed independently, then it is possible to later merge

results into the ‘global’ vector c′. We use this property to solve the

linear system Hd = g without ever forming the global system Hc at

each iteration of PCG.

Parallel local matrix-vector multiplication. We assign one thread

per scalar entry in a local system matrix (i.e. in A or in B), and apply

a CUDA-warp level reduction scheme (Algo. (1)) to compute the

components of the local solution vector (i.e. c′a, or c
′
b
) in parallel.

Briefly, threads in a warp are each mapped to one scalar entry in a

local system matrix; the thread will then multiply the matrix entry

to the corresponding component of the input vector c. The multipli-

cation result is then stored in private register memory, which (using

CUDA builtins clz, shfldown etc.) is then accumulated within each

warp before being added to the global output vector c′.
However, the inconsistency between the CUDA thread block size

(can only be 2
𝑛 , where n > 4) and the local Hessian dimension

(3𝑛×3𝑛, where 𝑛 = 4, 3, 2), as well as the warp size (32), unavoidably

results in a challenge for executing the process of multiplying the

matrix-vector elements and summing them in parallel. Ideally, the el-

ements of the same row of Hessian are managed by the same thread

warp, as then the summation of the matrix-vector elements can be

done by warp reduction, which is significantly faster than summing

the product individually by atomic operations. As shown in Fig. 5,

the inconsistent sizes of the thread block/thread warp/matrix dimen-

sions easily cause each row/matrix to be managed across different

thread blocks/warps.

To maximize parallelism, we define a data structure that repre-

sents the size and range of reduction in each row of the matrix,

which consists of the start position and the length of the reduction.

For example, in Fig. 5, in the first row of Hessian-0, the start position

is 0, and the length is 3, while in the second row the start position is

4 and the length is 2. We can maximize the parallelism and minimize

the branching, such that approximately one thread per row (of any

local system matrix) will actually commit data to the global memory

(see Algo. (1) for the details).

The local system matrices from our IPC formulation will at-most

have dimensions IR12×12 but allocating such space for all of our

contact pairs (potentially millions) is wasteful since some pairs re-

quire much less memory (e.g. point-point with IR
6×6) . Thus, we also

arrange these matrices into four storage buffers based on the type

of contact pairs to minimize storage costs and improve parallelism

by grouping workloads with same Hessian dimensions. In addition,

we also design the warp reduction scheme (Algo. (1)) to assume that

all local system matrices assigned to each block/group of CUDA

threads have the same local system matrix dimensions to reduce

booking-keeping and minimize divergent execution flow.

7 SUPPLEMENTARY UNIT TESTS

This section provides supplementary results, which show additional

units tests that where used to evaluate our implementation. These

results are shown in Fig. 6 and Fig. 7. Readers are also referred to

our supplementary video.

8 COMPARISON OF BARRIER METHODS ON CPU

Different aspects of implementation such as hardware choice (e.g.GPU

or CPU) and the choice of linear solver will inevitably influence the

performance enhancements observed in our barrier method. Thus,

to validate the accuracy of the improvements described in the paper,

we conduct additional evaluations of our barrier method within

the CPU-IPC framework. This involved implementing our barrier

method in CPU-IPC while using the same direct solver, CHOLMOD,

to measure performance improvement. The purpose of this evalua-

tion was to demonstrate improvements across various time steps

and material stiffness parameter settings. The detailed experimental

settings and the corresponding evaluation results are provided in

Tab. 5, which shows the improvements of our method as described
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Fig. 6. Unit tests: From left to right we have the point-triangle, edge-

edge, parallel edge-edge, point-edge and point-point case. We robustly

pass all these tests.

Fig. 7. Aligned, close and nonsmooth contact test: conforming colli-

sions are also accurately and stably resolved.

in the paper (see column #i). Our method leads to a consistently

lower number of Newton iterations on average. The advantage of

our approach is most evident when simulating with highly stiff

materials, reducing the number of iterations by up-to 3×.

Table 1. Solution tolerance versus the number of Newton iterations,

and the gradient-norm at convergence.

1e-2 1e-3 1e-4 1e-5 1e-6 1e-7

Iterations 3159 5772 9300 11123 14474 16631

Gradient-norm 3e−2 3e−3 3e−4 3e−5 3e−6 3e−7

Table 2. Newton Iterations w.r.t the gradient-norm tolerance in stan-

dard CPU-IPC [Li et al. 2020].

3e−2 3e−3 3e−4 3e−5 3e−6 3e−7
Iterations 3582 6292 9765 11910 15105 16962

9 COMPARISON BETWEEN DIRECT SOLVER AND PCG

In this section, we present and discuss results based on an apple-

to-apple comparison between the direct solver and PCG method

in terms of Newton solver iterations, tested with the scene shown

in Fig. (10 (a)) in the paper. This experiment is based on the setup

Table 3. Newton iterations w.r.t PCG tolerance and Newton tolerance

(based on gradient-norm). The data is plotted in Fig. 8.

PCG Tolerance Newton solver tolerance (gradient-norm)

3e−2 3e−3 3e−3 3e−5 3e−6 3e−7
1e−1 3981 7058 10418 13726 14970 19021

1e−2 3894 6585 10573 13257 15213 18534

1e−3 3698 6381 10340 12747 15915 18651

1e−4 3557 6116 10051 12163 14508 17367

1e−5 3846 6344 9896 12075 15320 17454

1e−6 3766 6288 9068 12695 14414 17491

1e−7 3666 6235 9921 12059 15120 17222

Table 4. Newton Iterations w.r.t the gradient-norm tolerance, using

our barrier method (with mollification) implemented the CPU-IPC

framework.

3e−2 3e−3 3e−4 3e−5 3e−6 3e−7
Iterations 2322 5425 8280 11231 14407 16148

described in ğ 8, using our PCG method within the CPU-IPC frame-

work [Li et al. 2020]. The objective is to illustrate that the PCG

tolerance employed in our experiments (i.e. to give 𝛿𝑛𝑒𝑤 < 1e-4𝛿0
as the termination condition of PCG), as mentioned in the paper,

is sufficient for generating simulations of comparable accuracy to

those achieved with direct solver in CPU-IPC.

In Tab. 1 and Tab. 2, we provide reference data showing the

number of Newton iterations w.r.t tolerance, where this tolerance

is defined based on the solution and the gradient, respectively. We

obtain this data by running standard CPU-IPC [Li et al. 2020] with a

direct solver (CHOLMOD) in two phases. In the first phase, we run

with six distinct settings of the solution tolerance and record the

number of Newton iterations and gradient-norm at convergence.We

then repeat the simulation in the second phase using the recorded

gradient-norm as the solver tolerance to analyse the number of

iterations required to converge. The solution threshold with the

highest accuracy in our experimental setup is approximately 1e−7
m/s. The gathered data in Tab. 1 and Tab. 2 is used as reference to

compare against the results shown in Tab. 3. It is important to note

that the convergence condition is determined by
∥d∥∞
𝑙Δ𝑡

≤ 𝜀𝑑 for the

solution tolerance and
∥g∥∞
𝑙Δ𝑡2

≤ 𝜀𝑔 for the gradient tolerance.

In Tab. 3, we provide the data we obtain by running standard

CPU-IPCwith PCG instead of a direct solver, whichwe use to demon-

strate that CPU-IPC converges to the same accuracy with either of

these two linear solvers. The gradient-norm is used for determin-

ing whether the Newton solver has converged in this experiment,

which we do in order to ensure a fair comparison because using the

solution for validation may be less reliable given that it varies with

different linear solvers (potentially impacting convergence/Newton

iterations). Crucially, the data of Tab. 3 and Fig. 8 provide further

evidence that our choice of solution tolerance (1e−4) for PCG in
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v,t,f 𝜌 ,𝐸,𝜐 𝑑 , 𝜀𝑑 𝜇, 𝜖𝑣 Δ𝑡 , #Δ𝑡 buildCP buildGH solve CCD #i misc timeTot speedup

cpu-Li cpu-Our cpu-Li cpu-Our cpu-Li cpu-Our cpu-Li cpu-Our cpu-Li cpu-Our cpu-Li cpu-Our cpu-Li cpu-Our (cpu-Our vs. cpu-Li)

Fig. (10)(paper) 32k, 135k, 38k

1e3,1e4,0.49

1e3,1e5,0.49

1e3,1e6,0.49

1e3,1e7,0.49

1e-3, 1e-2 -

0.01, 95

0.01, 80

0.01, 100

0.01, 81

6.33e2

4.09e2

4.66e2

4.62e2

4.39e2

2.34e2

2.27e2

1.44e2

2.97e2

2.05e2

2.39e2

2.33e2

1.95e2

1.08e2

1.01e2

6.28e1

3.39e3

2.32e3

2.74e3

2.62e3

2.68e3

1.51e3

1.42e3

8.76e2

5.41e2

3.58e2

4.04e2

3.94e2

3.75e2

2.07e2

2.27e2

1.23e2

33.2

26.5

24.8

29.8

24.4

16.5

12.7

9.93

1.93e1

1.81e1

2.14e1

3.11e1

1.61e1

1.30e1

1.25e1

1.10e1

4.88e3

3.31e3

3.87e3

3.74e3

3.71e3

2.07e3

1.99e3

1.22e3

1.32×
1.60×
1.94×
3.06×

Fig. (14)(paper)
8k, 36k, 10k(dolphin)

30k, -, 60k(funnel)
1e3,1e4,0.40 1e-3, 1e-2 -

0.01, 300

0.02, 150

0.03, 100

0.04, 75

0.05, 60

2.64e3

1.62e3

1.24e3

9.69e2

8.86e2

2.35e3

1.25e3

9.50e2

7.18e2

6.55e2

5.47e2

4.27e2

3.62e2

3.28e2

3.13e2

2.16e2

1.52e2

1.44e2

1.16e2

1.21e2

3.46e3

2.55e3

2.13e3

1.72e3

1.59e3

3.10e3

1.92e3

1.69e3

1.29e3

1.24e3

2.06e3

1.36e3

1.09e3

8.93e2

8.28e2

1.75e3

1.03e3

8.47e2

6.96e2

6.88e2

22.7

29.6

36.8

38.4

43.6

20.1

23.2

28.4

28.6

32.7

1.84e2

1.03e2

6.82e1

5.38e1

4.47e1

1.67e2

8.68e1

5.68e1

4.41e1

3.63e1

8.89e3

6.06e3

4.89e3

3.97e3

3.66e3

7.58e3

4.45e3

3.69e3

2.87e3

2.74e3

1.15×
1.36×
1.32×
1.38×
1.33×

Table 5. Performance summary using comparison Li et al. [2020]. The columns are as follows: number of vertices, including the interior for

tetrahedral meshes (v); number of tetrahedra (t); number of surface triangles (f); time step size in seconds (Δ𝑡); material density(𝜌), Young’s

modulus (𝐸) in units of pascals Pa, and Poisson’s ratio (𝜐); computational accuracy target in meters (𝑑) which is set w.r.t. to the scene bounding box

diagonal length l; Newton Solver tolerance threshold (𝜖𝑑 ); friction coefficient (𝜇) and velocity magnitude bound (𝜖𝑣);Total number of time steps

(#Δ𝑡); Total time to build/find contact pairs (buildCP); Total time to build energy gradients and Hessians for all types (buildGH); Total linear

solver time (solve); Total CCD time (CCD); Average number of Newton iterations per time step (#i); Total time for remaining miscellaneous tasks

(misc); Total simulation compute time (timeTot); We replace the barrier method of CPU-IPC (Li et al. [2020]) with ours to estimate the speedup of

our method. All time measurements are presented in seconds.
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Fig. 8. Normalized plot of the rows in Tab. 3: Newton-iteration number

when using PCG w.r.t tolerance. We normalize by the corresponding

iteration number for the direct solver (cf. Tab. 2). The figure demon-

strates that the difference in Newton-iteration number between using

PCG and the direct solver is typically within amargin of approximately

5% when PCG tolerance is smaller than 1e−4. Using a higher accuracy
tolerance for PCG does not necessarily lower the Newton-iteration

count, as locally accurate solutions ( i.e.per Newton iteration) do not

necessarily translate into a globally optimal convergence rate. Our

data further indicates that even with a relatively low-accuracy PCG

tolerance, the Newton solver can still converge. This follows the fact

that PCG provides an optimal search direction and step size within the

current Krylov subspace, which corresponds to the direction of energy

descent in that subspace, even with a relatively low-accuracy tolerance.

the paper yields an equivalent number of Newton iterations when

compared to higher-accuracy thresholds.

In order to demonstrate that our barrier method, using the PCG

solverwith 1e−4 tolerance, maintains the accuracy of the IPCmethod,

we conducted additional tests. We replaced the barrier method with

our approach and continued to use the gradient-norm threshold

to assess the convergence capability of our method across differ-

ent simulation accuracies. The results, presented in Tab. 4, indicate

that our barrier method is capable of performing high-accuracy

simulations as well.

10 IMPACT OF FRICTION HESSIAN PROJECTION

Fig. (1) Fig. (17) Fig. (19) Fig. (20)0%

20%

40%

60%

80%

100%

 Barrier SPD  Friction SPDMISC SPD

Fig. 9. Percentage of time on Hessian projection: Time breakdown con-

sidering the local Hessian projections in our simulator, which include

those of the elastic energy. Here we particularly focus on projections for

friction- and barrier Hessians. The x-axis refers to the figures/demos

provided in the paper, which are the examples involving friction (full

simulation).

Fig. 9 provides a comprehensive breakdown of compute time be-

tween local friction- and barrier Hessian projection alongside the

remaining miscellaneous local projections that take place in our

simulator (e.g. elastic energy Hessian). The results show that projec-

tion of the friction hessian has negligible overhead when compared

to our approximated analytic barrier Hessian projection. We have

found friction Hessian projection to merely require one-third to

one-half the time needed to compute barrier Hessian projection.
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Fig. 10. By employing the Funnel test showcased in Fig. (14) and

conducting the comparison illustrated in Fig. (9) of the main paper

with friction added, we include a time breakdown of the friction- and

barrier Hessian projections, along with the remaining miscellaneous

components of our simulator.

To provide a deeper understanding of the role friction playswithin

large-scale contact simulations, we also run a duplicate experiment

of the demo shown in Fig. (14) of the paper, setting the friction

coefficient to 1𝑒−2 (i.e. 𝜇 parameter in Tab. 5 or Tab. (5) in the paper).

A breakdown w.r.t total simulation time is presented in Fig. 10,

where it can be observed that the time expenditure associated with

friction Hessian projection has overall minimal footprint.
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