
7

A General Novel Parallel Framework for SPH-centric
Algorithms

KEMENG HUANG, East China Normal University, China
JIMING RUAN, East China Normal University, China
ZIPENG ZHAO, East China Normal University, China
CHEN LI, East China Normal University, China
CHANGBO WANG*, East China Normal University, China
HONG QIN, Stony Brook University, United States

To date, large-scale fluid simulation with more details employing the Smooth Particle Hydrodynamics (SPH)
method or its variants is ubiquitous in computer graphics and digital entertainment applications. Higher
accuracy and faster speed are two key criteria evaluating possible improvement of the underlying algorithms
within any available framework. Such requirements give rise to high-fidelity simulation with more particles
and higher particle density that will unavoidably increase computational cost significantly. In this paper, we
develop a new general GPGPU acceleration framework for SPH-centric simulations founded upon a novel
neighbor traversal algorithm. Our novel parallel framework integrates several advanced characteristics of
GPGPU architecture (e.g., shared memory and register memory). Additionally, we have designed a reasonable
task assignment strategy, which makes sure that all the threads from the same CTA belong to the same
cell of the grid. With this organization, big bunches of continuous neighboring data can be loaded to the
shared memory of a CTA and used by all its threads. Our method has thus low global-memory bandwidth
consumption. We have integrated our method into both WCSPH and PCISPH, that are two improved variants
in recent years, and demonstrated its performance with several scenarios involving multiple-fluid interaction,
dam break, and elastic solid. Through comprehensive tests validated in practice, our work can exhibit up to
2.18× speedup when compared with other state-of-the-art parallel frameworks.

CCS Concepts: • Computing methodologies → Physical simulation; Massively parallel algorithms;
Shared memory algorithms.

Additional Key Words and Phrases: smooth particle hydrodynamics (SPH), cooperative thread array (CTA),
shared memory, GPGPU architecture, fluid simulation, solid simulation

ACM Reference Format:
Kemeng Huang, Jiming Ruan, Zipeng Zhao, Chen Li, Changbo Wang*, and Hong Qin. 2019. A General Novel
Parallel Framework for SPH-centric Algorithms. Proc. ACM Comput. Graph. Interact. Tech. 2, 1, Article 7
(May 2019), 16 pages. https://doi.org/10.1145/3321360

*Corresponding author. Email: cbwang@sei.ecnu.edu.cn.
Authors’ addresses: Kemeng Huang, East China Normal University, Shanghai, China, 51174500023@stu.ecnu.edu.cn;
Jiming Ruan, East China Normal University, Shanghai, China, ruanjmruanjm@hotmail.com; Zipeng Zhao, East China
Normal University, Shanghai, China, zzpzhao@outlook.com; Chen Li, East China Normal University, Shanghai, China,
lichen2014gyx@163.com; Changbo Wang*, East China Normal University, Shanghai, China, cbwang@sei.ecnu.edu.cn; Hong
Qin, Stony Brook University, New York, United States, qin@cs.stonybrook.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
2577-6193/2019/5-ART7 $15.00
https://doi.org/10.1145/3321360

Proc. ACM Comput. Graph. Interact. Tech., Vol. 2, No. 1, Article 7. Publication date: May 2019.

https://doi.org/10.1145/3321360
https://doi.org/10.1145/3321360

7:2 Kemeng Huang, Jiming Ruan, Zipeng Zhao, Chen Li, Changbo Wang*, and Hong Qin

1 INTRODUCTION AND MOTIVATION
SPH is a popular mesh-free Lagrangian-based numerical method, which has been widely applied in
fluid simulation, astrophysics, and bio-simulation in recent decades. As a particle-based approach,
SPH must call for a large number of particles for high-fidelity numerical simulation with fine-scale
details and/or large-scale scenes, resulting in a significant cost increase of computational resources.
Therefore, it is of great significance to continue to improve the computational performance of SPH
and its variants. One key consideration for users is to seek a right tradeoff between simulation
effects and system efficiency in practice.
So far, much research has been focusing on the aspect of performance improvement. One

major theme in current research aims to improve the performance from the perspective of system
architecture. Because of their adaptivity to parallelism in SPH and its variants, some research
in recent years directly benefits from the emergence of new hardware platforms and software
development toolkits. Yet, much research, especially thosemaking use of GPUs, has not yet taken full
advantage of currently-available powerful hardware systems. For example, one popular traditional
GPGPU methods (TRA) [Crespo et al. 2015] [Hérault et al. 2010] can significantly improve the
performance compared with corresponding CPU implementation. However, to certain extent, they
still regard GPU as a single instruction, multiple threads (SIMT) processor and the characteristics
of thread and memory hierarchy in GPU are not fully utilized. Such under-utilization limits the
performance of their implementations by memory bandwidth. To ameliorate, Goswami et al. first
proposed a shared memory based method (PSMS) [Goswami et al. 2010]. But their method does not
achieve a better performance than TRA, which results from less optimal use of several GPGPU
characteristics.

In this paper, our goal is to break the performance bottleneck in the existing SPH implementations.
Our novel framework is completely designed for GPGPU architecture. In this framework, we first
devise a newly designed parallel task assignment algorithm, which considers the distribution of the
particles and the GPU’s schedule mechanism, with a goal of achieving a higher cache hit rate. In
addition, we design a novel memory access pattern based on the characteristics of memory hierarchy
on GPU, since the bandwidth of shared memory is much higher than global memory. Also, we
leverage several technologies and methodologies about taking multiple factors into consideration,
including the efficiency of thread cooperation, the balance of memory access and the influence
from device occupancy. Furthermore, we design a thread warp based radical thread organization.
Our key contributions could be highlighted as follows:

• We develop a new parallel task assignment algorithm following the manner of CTA sched-
uler, so as to achieve higher cache hit rate and reduce the time consumption for threads
synchronization, which takes full advantage of shared memory.
• We develop an efficient neighbor traversal algorithm based on the characteristics of memory
hierarchy on GPU.
• We develop a hybrid schedule algorithm by a new hash coding with the consideration of
particles’ arbitrary distribution in space, so as to integrate the traditional neighbor traversal
method into our framework.

2 RELATEDWORKS
As a flexible and powerful method (with mass-conservation property), SPH has been widely used in
fluid simulations [Müller et al. 2003] [Becker and Teschner 2007] [Ihmsen et al. 2014b], as well as de-
formable solid simulations [Libersky and Petschek 1991] [Müller et al. 2004]. GPU implementations
for SPH afford a real-time simulation. However, the current challenge is still hinging upon the high

Proc. ACM Comput. Graph. Interact. Tech., Vol. 2, No. 1, Article 7. Publication date: May 2019.

A General Novel Parallel Framework for SPH-centric Algorithms 7:3

demand for more scene details while still enhancing computational performance. Current research
thrusts are concentrating on several perspectives with an ultimate goal of better performance.

From the perspective of system architectures, some research focuses on this aspect. In [Ihm-
sen et al. 2011], Ihmsen et al. proposed a sophisticated SPH implementation on CPUs. However, SPH
implementations on CPUs have become less competitive due to the rapid development of GPGPU in
recent years. Hérault et al. proposed one of the earliest SPH implementations [Hérault et al. 2010]
based on the CUDA model. With the help of Particles, the example in the CUDA toolkit [Green
2008], Hérault’s full GPU implementation can exhibit one to two orders of magnitude faster than
the equivalent CPU implementation. The GPU part of DualSPHysics [Crespo et al. 2015] inherits the
idea in [Hérault et al. 2010] with several optimization suggestions stated in [Domínguez et al. 2013a].
Goswami et al. introduced an innovative GPU-based implementation [Goswami et al. 2010] for SPH.
They tried to make use of the thread and memory hierarchy in GPGPU to improve performance.

Due to the limitation of the computing power of a single device, many researchers took the
distributed system into consideration. Homogeneous multi-GPU platform is the simplest way to
utilize multiple devices like [Valdez-Balderas et al. 2013]. Rustico et al. also proposed a multi-
GPU edition for SPH implementation [Rustico et al. 2014] based on [Hérault et al. 2010] with a
posteriori load balancing system for handling different workload among devices. Domínguez et
al. extended [Valdez-Balderas et al. 2013] to heterogeneous multi-GPU clusters [Domínguez et al.
2013b].

From the algorithmic perspective, some research focuses on improving the SPH algorithms
for better performance. Ihmsen et al. detailed the uniform grid method in [Ihmsen et al. 2011].
This method has been widely used in many SPH implementations for neighbor search. Hoetzlein
proposed an improvement [Rama C. Hoetzlein 2014] in generating the neighbor list of the uniform
grid method. Mokos et al. developed a new GPGPU-based framework [Mokos et al. 2015] to
accelerate multi-phase SPH simulation (involving fluid and air). Yang et al. designed a unified
particle system framework [Yang et al. 2017] to accelerate multi-material visual simulations.

The arbitrary distribution of the particles results in the number of the particles in each subspace
becoming less controllable, yet these subspaces are used to help search the neighbor particles and
called cells in this paper. In the neighborhood grid method [Joselli et al. 2015] and GROMACS [Hess
et al. 2008], which is a method in the field of molecular dynamics (MD), the number of particles
in each cell could be the same according to some adjustment in the cell boundary. Thus the
interaction between particles can be greatly simplified. Páll and Hess also proposed a newly
designed algorithm [Páll and Hess 2013] which is specific to the above-mentioned optimization on
the SIMD architectures for acceleration.

From the visual effect perspective, some other improvements of SPH sacrifice correctness
for the purpose of better efficiency, so this tradeoff is suitable for applications with less strict
requirement on correctness, such applications include video games and digital movies. Typical
techniques may include, applying different densities of particles for both performance and surface
details [Horvath and Solenthaler 2013] [Orthmann and Kolb 2012] [Yan et al. 2009], data-driven
method [Ladicky et al. 2015], etc.

3 METHOD OVERVIEW
In this section, we present an overview for our implementation of SPH, a Lagrangian-based method,
which discretizes continuous fields by means of particles. Continuous properties of particles are ap-
proximated by weighted interpolation over smoothed functionsW (r,h) [Monaghan 1992] [Ihmsen
et al. 2014b]:

A(ri) =
∑
j
mj

Aj

ρ j
W (ri − rj ,h), (1)

Proc. ACM Comput. Graph. Interact. Tech., Vol. 2, No. 1, Article 7. Publication date: May 2019.

7:4 Kemeng Huang, Jiming Ruan, Zipeng Zhao, Chen Li, Changbo Wang*, and Hong Qin

1 2

5

4

8

6 10

11
14 15

13

7

9

3

12

1 2

5

4

8

6 10

11
14 15

13

7

9

3

12

1 2

5

4

8

6 10

11
14 15

13

7

9

3

12

1 2

5

4

8

6 10

11
14 15

13

7

9

3

12

3 14

4

9

11

1 15

10
8 5

2

6

13

12

7

t1

t2
t3

t4

Insert Particles Assign Tasks Compute Force

Preprocessing Properties Calculation

Integrate VelocitySort Particles

Fig. 1. The framework of the SPH implementation. The red blocks are the major improvements in this paper.

where A(ri) is some continuous variable of the particle at position ri , such as density or force,
m and ρ refer to mass and density. Smoothing radius h inW (r,h) defines the influence space
within which the contribution from the rest particles should be collected. So the neighbor traversal
problem of SPH can be mapped to the fixed-radius near neighbor (FNN) problem. Considering
adaptivity to parallelism and flexibility in numerical methods, we use a uniform grid method to
solve such problem (see Fig. 1). In this method, the simulation domain is partitioned into a set
of non-intersecting indexed cells C, whose size equals to smoothing radius h. Each particle is
inserted into one cell. Thus, during the neighbor traversal step, neighbor particles of cell CJ are
sought only by cell set CJ, which is the collection of the neighbor cells of CJ, J representing the
spatial position of CJ in Euclidean space. The procedure of computation has two steps: neighbor
information generation, and neighbor traversal. The time complexity of the former is O(mn) and
the cost of neighbor traversal is O(3kmnN) where m is the hash value size, n is the number of
particles in space, k is the dimension of space, and N is the upper bound of the particles in each
cell [Bentley et al. 1977].

In our implementation, the uniform grid is defined as its range in Euclidean space and cell size.
Since there is no data dependency among particles, we can calculate the cell indices (hash value) for
each particle using the definition of grid and particle position in parallel (cell indices are calculated
in the x-axis-first manner). Then, the GPU counting sort algorithm [Rama C. Hoetzlein 2014] is used
to sort particles according to cell indices. After sorting, the data of the particles existing in the same
cell and adjacent cells (the cells with the same y- and z-axis position, and adjacent x-axis position)
are continuous (without gap) in memory. Meanwhile, we can get the count array B and offset array
O of particles for each cell, and B will be used in particles task assignment and classification. We
will detail these parts in Section 4.1 and Section 4.3. It may be noted that, B and O are also regarded
as the neighbor list for each cell here. In our implementation, there is no neighbor list for each
particle. So in the properties calculation stage (see Fig. 1), the neighbor sets are the supersets of the
sets of particles whose distances are small than h. Based on our schedule assignment strategy, we
design an efficient shared memory based method to compute continuous variable of particles. We
will detail this part in Section 4.2.

4 NOVEL GENERAL PARALLEL METHOD
In this section, we will first detail our task assignment algorithm. Then the efficient neighbor
traversal method with a well-designed memory and thread allocation strategy is introduced. Finally
we will detail our new hash coding method and our hybrid strategy.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 2, No. 1, Article 7. Publication date: May 2019.

A General Novel Parallel Framework for SPH-centric Algorithms 7:5

0

α β γ
δ ε ζ
η θ λ

Task0 α-0 Task1 γ-0

Task2 δ-0 Task3 ε-0 Task4 ε-1

Task8 λ-0

Task5 ζ-0

Task6 η-0 Task7 θ-0

x

y

Fig. 2. The schematic diagram about how the tasks from each cell are assigned to the CTAs. The dotted lines
represent the threads which do not compute properties for each particle.

4.1 Task Assignment
In GPGPU architectures, thread scheduling has a significant impact on overall performance. In
order to achieve high parallelism and take full advantages of available resources, a CTA-based
thread scheduling strategy is used in our framework. Since the number of threads (D) in each CTA
is constant while the number of particles in each cell is variable, task assignment is necessary when
assigning particles into CTAs. Fig. 2 shows the result of task assignment in a simulation domain
partitioned by a uniform grid. The number of tasks B′j in cell Cj is equal to ⌈Bj/D⌉ (in this figure,
we assume D = 3, j is the index of cell). We assign a CTA to each task, which means there are no
multiple tasks sharing the same CTA. After calculating the number of tasks B′ for cells, we should
arrange these tasks into task array Q according to the definition of Q, which has following form:

Q = {t0, t1, t2, · · · , tS−2, tS−1}, (2)
ti = {⟨ji ,ki ⟩|Cji ∈ C,ki ∈ Z

+
0 , 0 ≤ i ≤ S − 1}, (3)

where ki is the index of task in cell Cji . For example (see Fig. 2), the count of all the CTAs S = 9
and t4 = ⟨ε, 1⟩ in the x-axis-first manner. Thereby, each CTA can locate its task quickly according
to task ti . Fig. 6 shows the relationship between thread block and CTA (each thread block contains
2 CTAs, so the count of all the thread blocks is equal to ⌈S/2⌉), we locate a CTA for each task
according to the following form:

i = 2 × Bid + a, (4)

where Bid is the indices of thread block, a is the index of CTA in the thread block.
Fig. 3 gives an overview of our task assignment. First, we use |C| threads in GPU to compute

B′ for cells based on the rules stated above. Second, we use an efficient GPGPU-based prefix sum
algorithm on B′ to calculate the task offsetO′ of cells. Third, |C| threads in GPU are used to arrange
tasks into Q based on B′ and O′. Finally, we obtain S by adding the last value in O′ and the last
non-zero value in B′. The implementation of the task assignment is summarized in Alg. 1 (array c
are the indices of particles in a cell).
Our task assignment always guarantees the sequence of tasks. In PSMS, task assignment is

designed based on atomic operations. This method can’t guarantee the sequence of tasks, because
the return values of atomic operations are random. So the adjacent tasks may have large distance
in task array. On the other hand, the CTA scheduler in CUDA model follows an approximate round-
robin manner [Lee et al. 2014], which means the adjacent CTAs are more likely to be executed
simultaneously. In addition, if the data accessed by adjacent CTAs are continuous in memory, we
can get a higher cache hit rate, especially for L2 cache [Wittenbrink et al. 2011]. Therefore our
method can achieve better performance compared with PSMS.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 2, No. 1, Article 7. Publication date: May 2019.

7:6 Kemeng Huang, Jiming Ruan, Zipeng Zhao, Chen Li, Changbo Wang*, and Hong Qin

Prefix Sum

Output

Thread 1

Thread 6 Thread 7 Thread 8 Thread 9

Thread 3 Thread 4 Thread 5

Calculated #CTA

t<α,0> t<γ,0> t<δ,0> t<ε,0> t<ε,1>

t<ζ,0> t<η,0> t<θ,0> t<λ,0>

Original Input α β γ δ ε ζ η θ λ

2 0 1 2 4 1 1 1 3

1 0 1 1 2 1 1 1 1

0 1 1 2 3 5 6 7 8

Parallel Operations

GPGPU-based Prefix Sum

Parallel Operations
0 5

9

B

B’

O’

Q

Fig. 3. The overview of the task assignment processes. The original input is the array B of particle count in
cells. The output is the array Q of task.

Algorithm 1 Task Assignment.
//GPU counting sort

1: B, c← conduct CUDA atomicAdd operations on particles’ hash values
2: O← conduct GPU-based prefix sum algorithm on B
3: sort particles according to B,O, c

//task assignment
4: B′← ⌈B/D⌉
5: O′← conduct GPU-based prefix sum algorithm on B′

6: Q← arrange tasks into Q

4.2 Neighbor Traversal
The novel neighbor traversal algorithm is the main innovation of our framework. In our algorithm,
we try to use several advanced characteristics of GPGPU architectures effectively.

Fig. 4(a) shows the main procedures of TRA and our method. The main procedures of TRA,
PSMS, and our method are the same: (1) fetch the data of the target particles from global memory
to the on-chip memory; (2) enter a cycle that fetches the data of one or multiple neighbors from
global memory to the on-chip memory; (3) conduct calculation for target particles; (4) send the
results back to the global memory. The main difference between TRA and our method is the usage
of the shared memory. Compared with fetching one neighbor particle to registers for each thread
in TRA, our method fetches at most 32 neighbor particles to the shared memory for each CTA (one
neighbor particle per thread, D = 32 in our framework). As the particles handled by the same CTA
belong to the same cell, these particles always share the same neighbor particles. In this way, the
fetched 32 neighbor particles can be used for all threads in the CTA, and the cost of shared memory
access is much lower than global memory. Therefore our method can greatly reduce requirements
of registers and requests of global memory when fetching the neighbor particles. And Fig. 4(b)
shows the evident differences with a simple example.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 2, No. 1, Article 7. Publication date: May 2019.

A General Novel Parallel Framework for SPH-centric Algorithms 7:7

REG
SMEM

REG
SMEM

REG
SMEM

REG
SMEM

REG
SMEM

REG
SMEM

REG
SMEM

REG
SMEM

GMEM GMEMThread 0 Thread 1 Thread 2 Thread 0 Thread 1 Thread 2

1

2

3

4

Our methodTRA Our methodTRA
GMEM

SMEM
GMEM

(a) (b)

Fig. 4. Figure (a) shows the procedures of neighbor traversal and attribute computation in TRA (left) and
our method (right). Blue blocks refer to the data from the particles needed to be computed, the green blocks
refer to the data from neighbors, and the red blocks refer to the resulting data. The red lines refer to CTA
synchronization. REG is register. SMEM is shared memory. GMEM is global memory. Figure (b) shows the
differences of memory operation in TRA (left) and our method (right). The circles shown with different colors,
represent the particles in different cells of the grid.

In PSMS, each thread block fetches at most 27 neighbor particles (i.e., 27 threads fetch 27 neighbor
particles from different neighbor cells). This method involves a lot of memory transactions while
our method can greatly reduce it. During each memory request in our method, the 32 requested
neighbor particles always come from the same cell or adjacent cells. Since these particles are always
stored in continuous memory, the memory transactions from the same memory request can be
combined in most cases. Thus, the cost of global memory access can be greatly reduced.

Alg. 2 shows the details of our neighbor traversal algorithm. Lines 2-4 are procedures of assigning
CTA for each task, which involve the calculations of a and q (indices of thread in CTA). After that,
we can identify active threads and idle threads (line 5). Each active thread fetches target particle
from global memory to registers (lines 6-8). In addition, the indices of neighbor cells are determined
in a uniform grid, because we have calculated the indices of target cell. Thereby, the ranges of
neighbor particles are determined. Here, we apply the optimization called simplifying the neighbor
search proposed in [Domínguez et al. 2013a]. This optimization regards three adjacent cells as
a cuboid cell, so as to reduce memory transactions and shared memory requests. Therefore the
number v of all the neighbor cells is set to 9 rather than 27, which means we compress 27 cubic
neighbor cells into 9 cuboid cells. We store the ranges of these 9 cuboid cells as offset array o and
count array b in shared memory (lines 9-13) according to B,O. Line 10 is the calculation of the
correct index e for o and b, because a thread block contains 2 CTAs (see Fig. 10). At the end of
initialization, array f and u are initialized by threads (line 14). fd represents the index of the cuboid
neighbor cell, which is being accessed by thread d . u represents the count of neighbor particles,
which have been accessed in cuboid cell fd . Both arrays reside in shared memory.

After the initialization of neighbor information (lines 9-14), the rest procedures are the migration
of data (from global memory to shared memory) and the calculation of variables. At first, lines 16-21
is the judgment of whether all the neighbor particles in cuboid cell fd have been accessed (line 16). If
so, switch to the next cuboid cell or end the loop (lines 17-20). Then, at most D particles are fetched
from global memory to shared memory for each CTA (lines 22-24). It is noteworthy that only the
needed data are read. Since the variables of the particles are stored as a structure in corresponding

Proc. ACM Comput. Graph. Interact. Tech., Vol. 2, No. 1, Article 7. Publication date: May 2019.

7:8 Kemeng Huang, Jiming Ruan, Zipeng Zhao, Chen Li, Changbo Wang*, and Hong Qin

Algorithm 2 Novel Neighbor Traversal.
1: for all threads do

//CTA location and self-data load
2: //a is the indices of CTA in thread block and q is the indices of thread in CTA
3: a ← ⌊d/D⌋, q ← d%D
4: i ← compute the indices of task using Eq. 4.
5: j,k ← get the indices of cell and indices of CTA in the cell from Qi
6: tr ← Bj + k × D + q //tr is the indices of particle in particle array
7: if tr < Bj + Oj then
8: read particle tr from GMEM to REG
9: end if

//neighbor information initialization
10: if q < v then //v is count of cuboid neighbor cell
11: //get corresponding neighbor range in GMEM
12: e ← a ×v + q
13: oe ← particle offset of cuboid neighbor cells
14: be ← particle count of cuboid neighbor cells
15: end if
16: syncthreads
17: fd ← a ×v, ud ← 0 //initial the accessing cuboid cells information

//main loop
18: while true do
19: //determine whether all neighbors in cuboid cell fd are accessed
20: if ud == bfd then
21: fd ← fd + 1, ud ← 0 //update accessing cuboid cell information
22: if v × (a + 1) ≤ fd then //determine whether neighbor accessing is end
23: break
24: end if
25: end if
26: if q < min(D, bfd − ud) then
27: pi ← ofd + ud + q //calculate the indices of neighbor in GMEM
28: read particle pi from GMEM to SMEM
29: end if
30: ud ← ud +min(D, bfd − ud)
31: syncthreads
32: if tr < Bj + Oj then
33: calculate variables of target particle
34: end if
35: end while
36: end for

arrays, this method can effectively reduce the demand for memory requests. At last, each active
thread makes use of the variables of target particle stored in the registers and neighbor particles
stored in shared memory to conduct the calculation of variables (lines 28-30).

In our framework, D is set to 32, which means there are 32 threads in each CTA and 64 threads
in each thread block (the number of CTA slots and warp slots supported by each SM in the recent
NVIDIA GPUs are 32 and 64 [Li et al. 2017], so our device occupancy can be 100%). Because of the

Proc. ACM Comput. Graph. Interact. Tech., Vol. 2, No. 1, Article 7. Publication date: May 2019.

A General Novel Parallel Framework for SPH-centric Algorithms 7:9

Fig. 5. From top to bottom, left to right: ocean wave with 18,440,253 particles.

Shared Memory

Thread Block

Global Memory

CTA 1 CTA 2

Fig. 6. The overview of memory operations in a thread block. The blue blocks represent the common memory
part of neighbor particles. Arrows represent the direction of memory requests. The lines, between shared
memory and global memory, shown with different colors, represent the order of memory request. Blue first,
red second, and black third.

native synchronous execution of threads in a warp, our setting greatly reduces the time of thread
synchronization operations (we will validate this design in Section 5.1). Moreover, two-CTAs-based
task assignment can further improve the cache hit rate, as two adjacent CTAs often share a common
part of neighbor particles (see Fig. 6).

4.3 Hybrid Strategy
In most cases, our task assignment and neighbor traversal methods have good performance. How-
ever, our methods may lead to some unnecessary waste of resources, as the size of CTA is constant.
For example, in Fig. 2, there is only one particle in cell γ . So one thread is enough to deal with the
particle while the other threads in CTA are idle. Moreover, in this cell, fetched neighbor particles
are not shared with multiple active threads and the number of neighbor particles is relatively small.
Therefore, in this case, our method will result in poor performance. The similar problem may exist
in the 5th CTA, as we assign a CTA to the 4th particle of Cε (such particles are named sparse
particles while other particles are named intensive particles in this paper). In order to avoid these
problems, the distribution of particles should be considered. Hence we propose a new hash coding
method, whose hash function maps position P = (x,y, z) to a hash value of size 2m. The function

Proc. ACM Comput. Graph. Interact. Tech., Vol. 2, No. 1, Article 7. Publication date: May 2019.

7:10 Kemeng Huang, Jiming Ruan, Zipeng Zhao, Chen Li, Changbo Wang*, and Hong Qin

Fig. 7. Two water jet streams collide with each other.

has the following form:

H (P) =

⌊ x
h
⌋
+
⌊y
h
⌋
· X +

⌊ z
h
⌋
· X · Y +m, T = 1,⌊ x

h
⌋
+
⌊y
h
⌋
· X +

⌊ z
h
⌋
· X · Y , T = 0,

(5)

where X , Y are the numbers of cells of the uniform grid in x- and y-axis. The value of T is 0 or
1, which depends on c and B. We can get c by atomicAdd operations in CUDA model, and B′ is
calculated with a new function:

B′j =

0, Bj < Pof ,

⌊(Bj + Nof)/D⌋, Bj ≥ Pof ,

(6)

where Nof is a threshold, which determines the maximum number of idle threads in CTA, Bj is
the average particles of Cj (we only consider target cell and 6 nearest neighbor cells, and divide
summation of the particle counts by 7 to get a approximate average count). And Pof is the threshold
of the minimum average particles in target cell, which determines whether assigns CTAs to target
cell or not. Once B′j is calculated, T has the following form:

T =

1, B′j · D ≥ c,

0, B′j · D < c.
(7)

Based on Eqs. 5, 6, and 7, the new hash value of P can be determined. For example, Bε = 4, in Cε
(see Fig. 2), Bε ′ = 1 (we set Nof = 1 and Pof = 2) according to Eq. 6. The hash value of 4th particle
is 4 while others are 13 according to Eqs. 5, and 7 (m is equal to 9 in Fig. 2). Similarly, the hash value
of particle in Cθ is equal to 7. And we will find that the hash value of sparse particles is smaller
than 9 while others are no less than 9. Hence, after sorting particles based on the new hash value
again, particles are divided into sparse particles group and intensive particles group.
As most sparse particles are not in the same cells, shared memory may not be helpful, even

result in poor performance. Therefore we integrate the traditional neighbor traversal method into
our framework to deal with sparse particles. When we launch thread blocks, we arrange the front
part of thread blocks to deal with sparse particles and regard the number of these thread blocks
as a threshold, which helps thread blocks distinguish the different particle groups (see Fig. 8, the
threshold is equal to 1). This hybrid strategy can reduce the thread waste and unreasonable memory
operations, especially when the particles are sparse. The implementation of our reasonable hybrid
strategy is summarized in Alg. 3.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 2, No. 1, Article 7. Publication date: May 2019.

A General Novel Parallel Framework for SPH-centric Algorithms 7:11

Thread Block 1 Thread Block 2

Fig. 8. The yellow circles represent sparse particles and the blue circles represent intensive particles. We
assign a thread to each sparse particle and assign a CTA to each task.

Fig. 9. The interaction between two different miscible fluids.

Algorithm 3 Hybrid Framework.
1: repeat

//preprocessing
2: B,O, c← conduct GPU counting sort in Alg. 1
3: B′← calculate B′ and new hash value using Eq. 5, 6, 7
4: conduct GPU counting sort on new hash values.
5: Bv ← find the boundary value of particles groups
6: O′← conduct GPU prefix sum method on B′

7: Q← organize task array Q
//variables calculation

8: if thread block belong to sparse particles then
9: for each sparse particle i do
10: read particle i from global memory to registers
11: calculate variables of particle i
12: end for
13: else
14: use Alg. 2 to deal with intensive particles
15: end if
16: until end of simulation

5 RESULTS AND EVALUATIONS
In this section, we evaluate our novel parallel framework using several scenes, which are imple-
mented with different SPH algorithms. The experiments are performed on a system with an Intel(R)
Core(TM) i5 4590 and NVIDIA Geforce GTX 970.

We compare our framework with two different frameworks (PSMS and TRA). PSMS is proposed
in [Goswami et al. 2010]. TRA is first proposed in [Hérault et al. 2010], and the similar method is
used in DualSPHysics [Crespo et al. 2015]. In TRA, there is a one-to-one relationship between a

Proc. ACM Comput. Graph. Interact. Tech., Vol. 2, No. 1, Article 7. Publication date: May 2019.

7:12 Kemeng Huang, Jiming Ruan, Zipeng Zhao, Chen Li, Changbo Wang*, and Hong Qin

Table 1. Test case settings and simulation results. The results are the average of the first 1000 time steps. PPNC
is the average particles of nonempty cells.Pre is preprocessing overhead.Den is density computation overhead.
Forc is force computation overhead. Tot is total simulation overhead excluded the velocity integration.

#particles PPNC TRA (ms) PSMS (ms) OUR METHOD(ms)
Pre Den Forc Tot Pre Den Forc Tot Pre Den Forc Tot

case 1 592,704 4.7 2.2 3.8 5.7 11.7 3.3 10.8 20.1 34.2 4.5 1.3 2.6 8.4
case 2 1,000,000 8.0 3.0 6.1 10.1 19.2 3.8 14.1 28.1 46.0 5.6 3.5 6.7 15.8
case 3 1,815,848 14.5 3.5 15.0 33.4 51.9 5.7 34.0 68.5 108.2 6.8 10.6 23.4 40.8
case 4 3,652,264 29.2 4.7 49.0 112 165.7 8.0 67.4 141.9 217.3 10.1 32.3 63.2 105.6
case 5 7,189,057 57.5 12.5 169.8 400 582.3 14.1 205.8 444.8 664.7 18.2 101.5 208.9 328.4
case 6 13,481,272 107.9 33.5 565.5 1299.5 1898.5 33.7 753.2 1562.9 2349.8 42.0 369.5 736.5 1148.0

32 64 128 256 512
0

2

4

6

N
or

m
al

iz
ed

 E
la

ps
ed

 T
im

e case 1
case 2
case 3
case 4
case 5
case 6

D

Fig. 10. Average elapsed time using different D settings. Time values are normalized to the cases with D = 32.

thread and a particle. Due to its simple manner and good performance, TRA becomes a popular
GPGPU method for SPH.

0 5 10 15 20 25 30
0.9

0.95

1

1.05

1.1

1.15

N
or

m
al

iz
ed

 F
ra

m
e

Ra
te

case 3 case 4 case 5 case 6

Nof

Fig. 11. Average frame rate using different Nof settings. Frame rates are normalized to the cases with
Nof = 31.

5.1 Parameter Effects
First of all, we explore the nature of our exposed parameters to find the correlations between their
configuration and the resulting performance. For brevity, the benchmark used here is the collapse
of cuboid fluid with the basic SPH. The key information of the test cases and detailed elapsed time
are shown in Table 1. These test cases are different not only in particle count but also in particle

Proc. ACM Comput. Graph. Interact. Tech., Vol. 2, No. 1, Article 7. Publication date: May 2019.

A General Novel Parallel Framework for SPH-centric Algorithms 7:13

Fig. 12. Two dropping elastic blocks collide with each other.

Fig. 13. The interaction between elastic block and fluid.

intensity. Higher particle intensity will lead to more memory requests, which significantly increases
the cost of computations. This table shows the evident improvement of our framework, which
can achieve 4× speedup compared with PSMS. Moreover, the table shows that the preprocessing
overhead of TRA is always the smallest owing to the simplest preprocessing operation in TRA.

Fig. 10 shows the performance of different CTA size in our framework. CTA synchronizations are
added to the cases withD ≥ 32 for thread safety. The test results show that the cases withD = 32 can
always achieve the best performance. However, the improvement is gradually weakened with the
increase of particle intensity, because higher particle intensity leads to less CTA synchronizations
and idle threads relatively.
Through our tests, our framework can always exhibit good performance when Pof is equal to

11.86. The appropriate value of Nof depends on the distribution of particles. Fig. 11 shows the
test results of cases 3-6 (we choose test cases according to Eq. 6, the average particles in each
non-empty cell of cases 1-2 is smaller than Pof , so the influence of Nof can be omitted). We find
that setting Nof to 16 can exhibit good performance (cases 3-5). However, in case 6, whose particles
are intensive, the optimal Nof approaches 31, because the relative number of idle threads becomes
smaller, but meanwhile our CTA based task assignment can still achieve good performance in a
scene with intensive particles.

5.2 Performance
As the performance of TRA is better than PSMS (see Table 1), we only compare our framework
with TRA. First, we apply ocean wave with more than 18 million particles (see Fig. 5), to explore
the improvement of our framework for a large-scale scene with fluids. Verified by a series of
tests/experiments, our framework achieves up to 1.65× speedup compared with TRA.
To further explore the performance of our framework, we use complex SPH algorithms as the

benchmark. PCISPH has great incompressibility due to its correction of particle position by much
computation process. Therefore, we apply water jet stream collision based on PCISPH [Solenthaler
and Pajarola 2009] (see Fig. 7), as the benchmark. Our framework can exhibit up to 1.58× speedup
(see the red line in Fig. 14).

Proc. ACM Comput. Graph. Interact. Tech., Vol. 2, No. 1, Article 7. Publication date: May 2019.

7:14 Kemeng Huang, Jiming Ruan, Zipeng Zhao, Chen Li, Changbo Wang*, and Hong Qin

0 200 400 600 800 1000 1200
Step

0

0.5

1

1.5

2

2.5

N
or

m
al

iz
ed

 F
ra

m
e

Ra
te

Fig.9Fig.7 Fig.12 Fig.13 BS

Fig. 14. Benchmark performance results. Fig.X is the performance of the corresponding figure’s scene imple-
mented with our framework. BS represents the performance of all benchmarks implemented with TRA in our
paper. The frame rate is normalized to the performance of TRA.

Furthermore, we apply multiple fluid SPH (see Fig. 9) [Ren et al. 2014] to explore the performance
of our framework with much more complex SPH algorithms. In this example, we achieve a real-time
simulation and rendering by our framework with a sparse hierarchy of grids represented in NVIDIA
GVDB Voxels [Wu et al. 2018]. Our framework can exhibit up to 1.70× speedup (see the blue line in
Fig. 14).

Besides, our framework is applied to solid simulation (e.g. elastic solid) and interaction between
elastic solid and fluid [Yan et al. 2016]. Fig. 12 shows the interaction between two dropping elastic
blocks. Our framework can get up to 1.63× speedup (see the green line in Fig. 14). Fig. 13 shows
the interaction between elastic solid and fluid. Our framework can exhibit up to 2.18× speedup (see
the yellow line in Fig. 14).

6 CONCLUSION AND FUTUREWORKS
This paper has devised a novel well-designed SPH framework. This framework makes full use of
several characteristics of GPGPU and attempts to combine such features in an optimal way so that
great performance improvement is achieved without the need of any modification in the existing
numerical method.
The framework designed in this paper can also be readily transplanted to other particle-based

methods [Bender and Koschier 2015] [Ihmsen et al. 2014a] [Macklin and Müller 2013] without much
difficulty. Essentially, the approaches we have proposed in this paper are based on an improved
GPGPU algorithm for solving the FNN problem on uniform grids. Thus, we believe that most of the
applications referencing the FNN problem such as the access to the leaf cells phase in fast multiple
method [Chandramowlishwaran et al. 2010] [Yokota et al. 2013], point cloud problem, marching
cube and astrophysics simulation can directly benefit from our work. On the other hand, we need a
good dynamic parameter setting strategy to cater to the distribution of particles in a uniform grid.
In addition, thanks to the earlier work in [Orthmann and Kolb 2012], our framework can further
make it possible to parallelize the cumulative summation process of SPH, so as to achieve an even
greater acceleration.

ACKNOWLEDGMENTS
The authors would like to especially thank all reviewers for their sincere and thoughtful suggestions.
This work was supported by National Natural Science Foundation of China under Grants (No.
61672237, 61532002).

Proc. ACM Comput. Graph. Interact. Tech., Vol. 2, No. 1, Article 7. Publication date: May 2019.

A General Novel Parallel Framework for SPH-centric Algorithms 7:15

REFERENCES
Markus Becker and Matthias Teschner. 2007. Weakly compressible SPH for free surface flows. In Proceedings of the 2007

ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 2007, San Diego, California, USA, August 2-4,
2007. 209–217.

Jan Bender and Dan Koschier. 2015. Divergence-free smoothed particle hydrodynamics. In Proceedings of the 14th ACM
SIGGRAPH / Eurographics Symposium on Computer Animation, SCA 2015, Los Angeles, CA, USA, August 7-9, 2015. ACM,
147–155.

Jon Louis Bentley, Donald F. Stanat, and E. Hollins Williams Jr. 1977. The Complexity of Finding Fixed-Radius Near
Neighbors. Inform. Process. Lett. 6, 6 (1977), 209–212.

Aparna Chandramowlishwaran, Samuel Williams, Leonid Oliker, Ilya Lashuk, George Biros, and Richard W. Vuduc. 2010.
Optimizing and tuning the fast multipole method for state-of-the-art multicore architectures. In 24th IEEE International
Symposium on Parallel and Distributed Processing, IPDPS 2010, Atlanta, Georgia, USA, 19-23 April 2010 - Conference
Proceedings. IEEE, 1–12.

Alejandro J. C. Crespo, José M. Domínguez, Benedict D. Rogers, Moncho Gómez-Gesteira, Stephen M. Longshaw, Ricardo B.
Canelas, Renato Vacondio, A. Barreiro, and O. García-Feal. 2015. DualSPHysics: Open-source parallel CFD solver based
on Smoothed Particle Hydrodynamics (SPH). Computer Physics Communications 187 (2015), 204–216.

José M. Domínguez, Alejandro J. C. Crespo, and Moncho Gómez-Gesteira. 2013a. Optimization strategies for CPU and
GPU implementations of a smoothed particle hydrodynamics method. Computer Physics Communications 184, 3 (2013),
617–627.

José M. Domínguez, Alejandro J. C. Crespo, Daniel Valdez-Balderas, Benedict D. Rogers, and Moncho Gómez-Gesteira.
2013b. New multi-GPU implementation for smoothed particle hydrodynamics on heterogeneous clusters. Computer
Physics Communications 184, 8 (2013), 1848–1860.

Prashant Goswami, Philipp Schlegel, Barbara Solenthaler, and Renato Pajarola. 2010. Interactive SPH Simulation and
Rendering on the GPU. In Proceedings of the 2010 Eurographics/ACM SIGGRAPH Symposium on Computer Animation,
SCA 2010, Madrid, Spain, 2010. Eurographics Association, 55–64.

Simon Green. 2008. Cuda particles. NVIDIA Whitepaper 2, 3.2 (2008), 1.
Alexis Hérault, Giuseppe Bilotta, and Robert A Dalrymple. 2010. Sph on gpu with cuda. Journal of Hydraulic Research 48, S1

(2010), 74–79.
Berk Hess, Carsten Kutzner, David Van Der Spoel, and Erik Lindahl. 2008. GROMACS 4: algorithms for highly efficient,

load-balanced, and scalable molecular simulation. Journal of chemical theory and computation 4, 3 (2008), 435–447.
Christopher Jon Horvath and Barbara Solenthaler. 2013. Mass preserving multi-scale SPH. Pixar Technical Memo 13-04

(2013).
Markus Ihmsen, Nadir Akinci, Markus Becker, and Matthias Teschner. 2011. A Parallel SPH Implementation on Multi-Core

CPUs. Computer Graphics Forum 30, 1 (2011), 99–112.
Markus Ihmsen, Jens Cornelis, Barbara Solenthaler, Christopher Horvath, and Matthias Teschner. 2014a. Implicit Incom-

pressible SPH. IEEE Transactions on Visualization and Computer Graphics 20, 3 (2014), 426–435.
Markus Ihmsen, Jens Orthmann, Barbara Solenthaler, Andreas Kolb, and Matthias Teschner. 2014b. SPH Fluids in Computer

Graphics. In Eurographics 2014 - State of the Art Reports, Strasbourg, France, April 7-11, 2014. ACM, 21–42.
Mark Joselli, José Ricardo da S. Junior, Esteban Walter Gonzalez Clua, Anselmo Antunes Montenegro, Marcos Lage, and

Paulo A. Pagliosa. 2015. Neighborhood grid: A novel data structure for fluids animation with GPU computing. J. Parallel
and Distrib. Comput. 75 (2015), 20–28.

Lubor Ladicky, SoHyeon Jeong, Barbara Solenthaler, Marc Pollefeys, andMarkus H. Gross. 2015. Data-driven fluid simulations
using regression forests. ACM Transactions on Graphics 34, 6 (2015), 199:1–199:9.

Minseok Lee, Seokwoo Song, Joosik Moon, John Kim, Woong Seo, Yeon-Gon Cho, and Soojung Ryu. 2014. Improving
GPGPU resource utilization through alternative thread block scheduling. In 20th IEEE International Symposium on High
Performance Computer Architecture, HPCA 2014, Orlando, FL, USA, February 15-19, 2014. IEEE, 260–271.

Ang Li, Shuaiwen Leon Song, Weifeng Liu, Xu Liu, Akash Kumar, and Henk Corporaal. 2017. Locality-Aware CTA Clustering
for Modern GPUs. In Proceedings of the Twenty-Second International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2017, Xi’an, China, April 8-12, 2017. 297–311.

Larry D Libersky and Albert G Petschek. 1991. Smooth particle hydrodynamics with strength of materials. In Advances in
the Free-Lagrange Method Including Contributions on Adaptive Gridding and the Smooth Particle Hydrodynamics Method.
Springer, 248–257.

Miles Macklin and Matthias Müller. 2013. Position based fluids. ACM Transactions on Graphics 32, 4 (2013), 104.
Athanasios Mokos, Benedict D. Rogers, Peter Stansby, and José M. Domínguez. 2015. Multi-phase SPH modelling of violent

hydrodynamics on GPUs. Computer Physics Communications 196 (2015), 304–316.
Joe J Monaghan. 1992. Smoothed particle hydrodynamics. Annual Review of Astronomy and Astrophysics 30, 1 (1992),

543–574.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 2, No. 1, Article 7. Publication date: May 2019.

7:16 Kemeng Huang, Jiming Ruan, Zipeng Zhao, Chen Li, Changbo Wang*, and Hong Qin

Matthias Müller, David Charypar, and Markus H. Gross. 2003. Particle-based fluid simulation for interactive applications.
In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, San Diego, CA, USA, July
26-27, 2003. 154–159.

Matthias Müller, Richard Keiser, Andrew Nealen, Mark Pauly, Markus H. Gross, and Marc Alexa. 2004. Point based animation
of elastic, plastic and melting objects. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, Grenoble, France, August 27-29, 2004. 141–151.

Jens Orthmann and Andreas Kolb. 2012. Temporal Blending for Adaptive SPH. Computer Graphics Forum 31, 8, 2436–2449.
Szilárd Páll and Berk Hess. 2013. A flexible algorithm for calculating pair interactions on SIMD architectures. Computer

Physics Communications 184, 12 (2013), 2641–2650.
Graphics Devtech Rama C. Hoetzlein. 2014. Fast Fixed-Radius Nearest Neighbors: Interactive Million-Particle Fluids. In

GPU Technology Conference. NVIDIA.
Bo Ren, Chen-Feng Li, Xiao Yan, Ming C. Lin, Javier Bonet, and Shi-Min Hu. 2014. Multiple-Fluid SPH Simulation Using a

Mixture Model. ACM Transactions on Graphics 33, 5 (2014), 171:1–171:11.
Eugenio Rustico, Giuseppe Bilotta, Alexis Hérault, Ciro Del Negro, and Giovanni Gallo. 2014. Advances in Multi-GPU

Smoothed Particle Hydrodynamics Simulations. IEEE Transactions on Parallel and Distributed Systems 25, 1 (2014), 43–52.
Barbara Solenthaler and Renato Pajarola. 2009. Predictive-corrective incompressible SPH. ACM Transactions on Graphics 28,

3 (2009), 40:1–40:6.
Daniel Valdez-Balderas, José M. Domínguez, Benedict D. Rogers, and Alejandro J. C. Crespo. 2013. Towards accelerating

smoothed particle hydrodynamics simulations for free-surface flows on multi-GPU clusters. J. Parallel and Distrib.
Comput. 73, 11 (2013), 1483–1493.

Craig M. Wittenbrink, Emmett Kilgariff, and Arjun Prabhu. 2011. Fermi GF100 GPU Architecture. IEEE Micro 31, 2 (2011),
50–59.

Kui Wu, Nghia Truong, Cem Yuksel, and Rama Hoetzlein. 2018. Fast Fluid Simulations with Sparse Volumes on the GPU.
Computer Graphics Forum 37, 2 (2018), 157–167.

He Yan, Zhangye Wang, Jian He, Xi Chen, Changbo Wang, and Qunsheng Peng. 2009. Real-time fluid simulation with
adaptive SPH. Journal of Visualization and Computer Animation 20, 2-3 (2009), 417–426.

Xiao Yan, Yun-Tao Jiang, Chen-Feng Li, Ralph R. Martin, and Shi-Min Hu. 2016. Multiphase SPH simulation for interactive
fluids and solids. ACM Transactions on Graphics 35, 4 (2016), 79:1–79:11.

Tao Yang, Jian Chang, Ming C. Lin, Ralph R. Martin, Jian J. Zhang, and Shi-Min Hu. 2017. A unified particle system
framework for multi-phase, multi-material visual simulations. ACM Transactions on Graphics 36, 6 (2017), 224:1–224:13.

Rio Yokota, Lorena A. Barba, Tetsu Narumi, and Kenji Yasuoka. 2013. Petascale turbulence simulation using a highly parallel
fast multipole method on GPUs. Computer Physics Communications 184, 3 (2013), 445–455.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 2, No. 1, Article 7. Publication date: May 2019.

	Abstract
	1 Introduction and Motivation
	2 Related Works
	3 Method Overview
	4 Novel General Parallel Method
	4.1 Task Assignment
	4.2 Neighbor Traversal
	4.3 Hybrid Strategy

	5 Results and Evaluations
	5.1 Parameter Effects
	5.2 Performance

	6 Conclusion and Future Works
	References

