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Feature List
Modular Design: Modular design and package management system
SPHerePackage
Physics Simulation:

◦ SPH (PCISPH, WCSPH)
◦ Task-based general real-time particle neighbor search algorithm
◦ General hardware ray tracing collision detection
◦ XPBD cloth simulation
◦ XPBD cloth-SPH water weak coupling
◦ SDF static boundary interaction

Rendering and Visualization: Real-time camera, real-time fluid
cloth rendering
Parallel Primitives: Reduce/Scan
File IO: abc/obj/sdf/smesh
Asset Generation: cloth builder/fluid builder
User Interface: QT-GUI
Build System: Xmake
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LuisaCompute

Figure: LuisaCompute Architecture [5]
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Functions in LC

1 Kernel: The entry function of device.
2 Callable: The function that can be called by Kernel.
3 Inline Function: The function that can be called by Kernel, but will

be inlined in Kernel.
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Capture

Variable Capture: Capture the value of host variable. For basic
types, the value is the runtime value of the variable. For complex
types, the value is the runtime value of the pointer.
Resource Capture: Capture the handle of host resource. LC will
pass the handle of the resource to device implicitly.
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Multi‐stage Code Generation

1 C++ Preprocessor
2 C++ Template
3 C++ Runtime AST Generation
4 AST to Device Code Generation

Stage 1 and 2 are common C++ code generation stages. Stage
3 and 4 are unique to LC. With LC’s C++ embedded DSL
(C++ Embedded Domain Specific Language), SPHerePackage
could increse its ability of code reuse and modularity.
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Just In Time Compilation

1 Runtime Compilation
2 Cut-off Branches
3 Optimize Register Allocation
4 Reduce Memory Barrier without decrease code reuse
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Command Reordering

1 Stream Agnostic
2 Reduce Synchronization
3 Let User Decide When to Execute
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LC helps the optimize your code on the backend

These principles are quoted from
https://gpuopen.com/learn/rdna-performance-guide/

1 assure the number of allocators greator than the thread recoding
2 try to reuse the same allocator
3 minimize the Amount of Command Buffer Submission to GPU
4 use pipeline cache to reuse PSO
5 create static large memory heaps and sub-allocated from the heap
6 ...
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Package Environment

PackageGlobal a thread local static class, is the package
environment context of the current thread.
PackageEnvScope a Guard class, whose construction and
destruction determine a specific package environment. When
constructed, push the current environment to PackageGlobal, and
when destructed, restore the original environment of PackageGlobal.
If PackageEnvScope is not used, it will always be in the default
environment.
Package base class, used to standardize behavior encapsulation and
provide auxiliary code. All package developments inherit from this
base class.

SPHere Group title



Background
method
Result

Reference

SPHerePackage
SPH Solver
XPBD solver
Coupling
Ray Tracing Collision Detection
Visualization

Package Type
1 Method Package: Provide Callable for users. It does not need to

be compiled and only has AST Gen stage.
2 Routine Package: Provide Kernel for users. Users provide input

data that meets the requirements and call the package to get the
result (such as the parallel primitive library implemented in this
project). This kind of package needs to be compiled before it can be
used.

3 Module Package: Provide Kernel/Callable for users. Different from
1/2, this kind of package maintains a private data structure
(occupying device resources). Users interact with the algorithm of
this package through the interface provided by this package. Typical
Module Packages in SPHere are: BVHCollisionDetection (Kernel
with resources), SDF (Callable with resources).

4 Inline Package: Provide inline code segment for users. Users
directly call the corresponding C++ function, and the corresponding
code is expanded in Callable or Kernel, used for helper functions.
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Package Norm

config: Each package must have a config stage, which is used to
determine the capture behavior of the package code in the AST Gen
stage.
astgen: Callable, Kernel can generally be completed by lazy
generation.
compile: For Routine Package and Module Package, there is a
compile stage, which can be compiled by lazy compilation (compile
when the user calls a specific interface).
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Package Management

Callable Package, Routine Package can be managed and reused,
Module Package cannot be reused, because the latter has specific
resources.
The package management of SPHerePackage maintains a
Description, Package. Any package needs to be uniquely described
by Description. The package that meets the description will be
returned to the user when PackageManager::require(Description) is
called. If there is no package that meets the description, the
corresponding package will be created and returned to the user.
Packages can depend on each other, and this dependency is also
implemented through require
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Callable Package

Figure: Callable Package
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Callable Package

Callable Package can be divided into two categories:
1 Module with resources, that is, this kind of package needs to apply

for resources such as Buffer, Image from device, and use it as the
data structure inside the package. Users can access the data inside
the package through the interface provided by the package.
Corresponding to Package A in Figure 3.

2 Method without resources, that is, this kind of package does not
need to apply for any resources from device. All functions provided
by this package operate on the resources provided by the user, or are
just helper functions. Corresponding to Package B in Figure 3.

For Callable Package, users will first configure and astgen the
package, and then use it in their Kernel. As shown in Figure 3:
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Kernel Package

Figure: Module Package
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Kernel Package

Kernel Package can be divided into two categories:
1 Module with resources, that is, this kind of package needs to apply

for resources such as Buffer, Image from device, and use it as the
data structure inside the package. Corresponding to Input
Buffer→Viewer path in Figure 4.

2 Routine without resources, that is, this kind of package does not
need to apply for any resources from device. All resources are
applied and provided by the user. Corresponding to Input
Buffer→Output Buffer path in Figure 4.
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SPH Method

SPH(Smoothed-particle hydrodynamics) is a space discrete
method, which mainly estimates the value of continuous func-
tion in space by sampling points around it. For example, the
value of continuous function A(x) at position x is calculated by
the physical quantity of particles in the neighborhood of the po-
sition, and the interpolation is calculated by the smooth kernel
function W. The specific kernel function interpolation formula is
as follows:

A(x) = ∑
j

mj
Aj
ρj

W(x− xj,h), (1)
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SPH Method

A(x) = ∑
j

mj
Aj
ρj

W(x− xj,h)

1 mj is the mass of the particle.
2 ρj is the density of the particle.
3 h is the radius of the smooth kernel (support domain).
4 W is the smooth kernel function, whose influence should decrease

with the increase of distance. The kernel function W selected in this
project is cubic spline function.

W(q) = σd


6(q3 −q2)+1, for 0≤ q< 0.5
2(1−q)3, for 0.5≤ q< 1
0, for q≥ 1

(2)
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N‐S Equation

using SPH method to calculate the simplified Naiver-Stokes
equation. Among them, the NS equation is divided into mo-
mentum equation and continuity equation:

dρ
dt =−ρ∇v (continuity equation)
dv
dt =− 1

ρ
∇P+µ∇2v+g (momentum equation)

(3)

SPHere Group title



Background
method
Result

Reference

SPHerePackage
SPH Solver
XPBD solver
Coupling
Ray Tracing Collision Detection
Visualization

SPH Method to Solve NS Equation

1 WCSPH (Weakly Compressibility SPH) is a SPH method based on
state equation. This method assumes that the fluid can be slightly
compressed and calculates the pressure by the compression amount.

2 PCISPH (Predictive-Corrective Incompressible SPH) is a SPH
method based on iterative correction. This method assumes that the
fluid is incompressible and iteratively corrects the pressure to
maintain incompressibility.
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WCSPH

1 assume that the fluid can be slightly
compressed, calculate the pressure by
the compression amount.

2 calculate current density
ρ(x) = ∑b mbW(x−xb,h)

3 calculate pressure using Tait Equation:
P(x) = B((ρ(x)

ρ0
)γ −1)

4 when neighborhood pressure is
inconsistent, particles will be pushed
away or pulled together.
∇fp(x) =−∇P(x)

ρ(x) .

5 calculate the viscosity force, using
artificial viscosity as SPlisHSPlasH

SPHere Group title



Background
method
Result

Reference

SPHerePackage
SPH Solver
XPBD solver
Coupling
Ray Tracing Collision Detection
Visualization

PCISPH

PCISPH is based on WCSPH, with some
slight changes:

1 Prediction Step predicte the position
and velocity of the particle.

2 Correction Step calcuate the
difference of predictive density and
static density, and correct the pressure.

3 recursively correct the pressure until
the density error is less than a certain
threshold [3]
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Neighbor Search

We implement the task-based neighborhood search method [1]

1 split the space into a uniform grid, which width, length and height
are all support radius.

2 assign each particle to the grid cell it belongs to.
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1 assign particles in grid cell to the task of length 32, maintaining all
the particles in the same task are in the same grid cell.

2 assign each task to 32 thread, when the distribution of particles are
sparse, the number of threads will be less than 32.

3 for sparse case: each particle is assigned to a thread, and the
neighborhood data is obtained and the physical quantity is
calculated.

4 for dense case: each task shares the neighborhood data.
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SPH Solver Design
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XPBD Solver

XPBD is a simple deformable simulation method, which is:
fast(matrix-free),
easy to implement,
constraint-based ,
stable.

can be used to simulate:
cloth : mass-spring, strain based ...
hair/rod: rod dynamics ...
soft body: strain based ...
rigid body: shape matching ...
fluid
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XPBD starts with Newton’s equation of motion given by:

Mẍ =−∇U(x)T + fext, (4)

M the lumped mass matrix
x

(
x0T,x1T,x2T, ...

)T

U the elastic potential
fext the stacked external force vector

Apply the implicit Euler discretization to Eq. 4:

Mx− x̂
∆t2 =−∇U(x)T, (5)

where x := x(t+∆t) and x̂ = 2 ·x(t)−x(t−∆t)+M−1 · fext ·∆t2.
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All potentials in the XPBD framework are formulated as squared
constraints:

U(x) = 1
2C(x)T α−1C(x) ,

where α is the diagonal compliance matrix describing the inverse stiffness
of all constraints.

By taking the negative gradient of the potential term, we obtain the
elastic force:

felastic =−∇UT =−∇CTα−1C =
1

∆t2 ∇CTλ ,

where λ =−α̃−1C(x) with α̃ = α
∆t2 .
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Thus, we obtain two equations available for iteration:

M(x− x̃)−∇C(x)T λ = 0, (6)
C(x)+ α̃λ = 0. (7)

We rewrite Eqs. 6 and 7 as g(x,λ ) = 0 and h(x,λ ) = 0, respectively,
and obtain the following equation by linearizing Eqs. 6 and 7:

[
K −∇CT (

xi)
∇C

(
xi) α̃

][
∆x
∆λ

]
=−

 g
(

xi,λ i
)

h
(

xi,λ i
)  , (8)

where xi denotes the result of the i-th iteration, and

K =
∂g
∂x = M− ∂ 2CT

∂x2 ·λ ,
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By plugging the approximations of XPBD, K ≈ M and g ≈ 0, into Eq. 8,
we get the following equations to describe the iteration process of XPBD:[

∇C
(
xi)M−1∇C

(
xi)T

+ α̃
]
∆λ =−C

(
xi)− α̃λ i, (9)

∆x = M−1∇C
(
xi)T

∆λ . (10)
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Since M and α̃ are diagonal matrices, Eqs. 9 and 10 can be expressed in
a matrix-free style. Using j to represent the j-th constraint, and k to
represent the index of the particle affected by the j-th constraint, we have

∆λj =
−Cj − α̃jλ i

j
∇CjMj

−1∇CT
j + α̃j

, (11)

∆xk = m−1
k

∂Cj
∂xk

T
∆λj,k ∈ Oj, (12)

where Oj is a set containing the indices of all particles affected by the
j-th constraint. Mj is the lumped mass matrix of all particles in Oj. For
instance, if the j-th length constraint expresses the length relationship
between particle m and particle n, then Oj = {m,n}.
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XPBD Spring Example
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Our Constraints

◦ Length Constraint C(x0,x1) = ∥x0 −x1∥− l0 = 0
◦ Triangle Strain Constraint C(x0,x1,x2) = det(F)−1 = 0.
◦ External Collision Constraint

C(x0,x1,x2) =−(d(x0,x1,x2)−dthickness)≤ 0.
◦ Fluid Cloth Collision Constraint

C(xfluid,x0,x1,x2) =−(d(xfluid,x0,x1,x2)−dthickness − rfluid)≤ 0.
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Solver Implementation

XPBD Solver: Core Solver
◦ Constraint Solver:Solve all kinds of constraints
◦ Integrator:Integrate particles in time
◦ Particle Manager:Manage particle attributes, manage the results of

various constraint solutions and apply a specific normalization
strategy

◦ Topology Manager:Maintain the topology of particles, such as
recording specific information on edges, triangles, and quadrilaterals.

Builder: Tools for generating solvable objects from assets
◦ ClothBuilder:Cloth asset generation, generate basic grid cloth (Grid),

generate cloth from .obj file, etc.
◦ ClothPatch:Representation of cloth patches, used to initialize cloth,

download current cloth solution results from GPU, etc.
◦ ClothMaterial Cloth material.
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Solver Implementation

Figure: XPBD Solver
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Coupling

Figure: SPH-XPBD Coupling
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1 SPH Predict Phase: Update the position of SPH particles
2 XPBD Collision Detection Phase: Wait for the completion of SPH

Predict Phase
3 SPH Second Update Phase: Wait for the completion of XPBD

Collision Detection Phase
4 After that, SPH and XPBD solvers can work independently until the

iteration ends.
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Coupling with External Collider

To coupling SPH and XPBD with external collider, we employ the
SDF-based collision method from [2], using Frank-Wolfe algorithm to
solve the following non-linear constrained optimization problem:

xi = arg min
α,β ,γ

ϕ(xi),

s.t. xi = αpi +βqi + γri,α +β + γ = 1.
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Our Implementation
The following figure shows the data flow and function calls of the
constrain() function when the fluid interacts with the static SDF
boundary module.
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Ray Tracing Collision Detection

Figure: Ray Tracing Collision Detection

The core function of hardware ray tracing is BVH acceleration structure
construction, Ray-AABB and Ray-Triangle detection. We use BVH
acceleration structure construction and Ray-AABB part to realize the
collision detection algorithm. [4]
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Visualization Framework
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Visualization Framework

GUI is responsible for displaying the simulation screen externally,
accepting and processing user input and converting it into
configuration information, and controlling the entire update process.
The Visualizer internally maintains a swapchain, maintains the
painter registered as a painter list, and calls the paint method of
each painter in turn to render the image on the display buffer during
the rendering update, and finally synchronizes the display buffer to
the foreground.
The Painter is responsible for the specific visualization algorithm,
obtains the particle position information from the simulation engine,
obtains the scene information such as the light source from the
scene configuration, and obtains the camera position and direction
update information from the GUI.
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Visualization Method

Rasterization: use point to draw fluid, use mesh for cloth, SDF, etc.
Screen Space Fluid: use screen space depth and thickness buffer to
reconstruct fluid surface
Volume Rendering: use ray marching to render fluid
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Rasterization

Advantage: can support
multiple object
Drawback: expensive to
reconstruct fluid surface
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Screen Space Fluid

Advantage: fast, easy to
get result
Drawback: cannot be
extended to more
complex geometry of
fluid, light and shadow
rendering, the
reconstructed normal is
not accurate.
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Volume Rendering

Advantage: accurate,
can be extended to
more complex geometry
of fluid, light and
shadow rendering
Drawback: expensive to
render
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GUI Method

MainWindowQT: main
window inherited from
QMainWindow
Main widget inherited
from QWidget

1 Canvas: visualization
part

2 Control Panel:
control part
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Control Flow

Based on QT’s slot and signal, we can build our control flow on
our simulation engine.

Simulation Process Control: start/pause/reset
Camera Control: rotate/zoom/pan/move
Parameter Control: change parameters like dx, dt, alpha, stiffB,
etc.
Scene Control: change scene like waterfall, cloth, etc.
Visualization Control: change visualization method
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Comparison View
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Benchmark

Cube: the competition scene, one 0.5m x 0.5m x 0.5m cube of
water falls into a 1m x 1m x 1m cube container, with 125,000
particles, 1000 static density, 30% energy absorption rate, -0.7
reflection coefficient, 0.02 search radius.
Sphere: change the container to a sphere, two render our logo.
Waterfall: a waterfall scene, show the flexibility of our scene
modification ablitity.
Bunny: a bunny with a cloak under the waterfall, show the coupling
of fluid, cloth and static boundary.
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Performance

The Result Was Tested on RX7900 GRE
Scene Cube(SP) Cube(SSF) Cube(Volume) Bvh Sphere Waterfall Bunny
FPS 691 522 446 72 471 702 302

SP means the scene is rendered by SpritePoint (a kind of points
splatting method), the default visualization method.
SSF means the scene is rendered by ScreenSpaceFluid (a kind of
screen space method).
Volume means the scene is rendered by Volumetric Rendering
Method (with screen-space intermediate area reconstruction).
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Performance

Software Spatial Hash performs better than Hardware BVH?
fps BVH Spatial Hash

RTX4090 175 630
RX7900 72 691

As shown in Figure 9, the performance of Spatial Hash is about
ten times that of BVH. When SPH simulation, the particles are
often very dense locally, which leads to the BVH nodes being
traversed frequently (Ray AABB detection), which in turn leads
to the performance degradation of BVH. It can be said that BVH
is more suitable for culling than for neighborhood search.
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BVH and Spatial Hash Profiling on RX7900

Figure: Comparison of BVH and Spatial Hash on RX7900
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BVH and Spatial Hash Profiling on RTX4090

Figure: Comparison of BVH and Spatial Hash on RTX4090
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SPHere Logo

Figure: SPHere Logo
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Waterfall

Figure: Waterfall
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Bunny in Rain

Figure: Bunny in Rain
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