Contents lists available at ScienceDirect

Graphical Models

journal homepage: www.elsevier.com/locate/gmod

Novel hierarchical strategies for SPH-centric algorithms on GPGPU

Kemeng Huang^a, Zipeng Zhao^a, Chen Li^a, Changbo Wang^{a,*}, Hong Qin^b

^a School of Computer Science and Technology, East China Normal University, Shanghai, China ^b Department of Computer Science, Stony Brook University, Stony Brook, USA

ARTICLE INFO

Keywords: Smoothed Particle Hydrodynamics (SPH) Hierarchical Perpendicular Grid (HPG) Neighbor search Hierarchical task assignment

ABSTRACT

This research further extends an existing state-of-the-art GPU framework of SPH simulation for better performance without any compromise of numerical accuracy and sacrifice of simulation detail. Towards this grand goal, we devise three new strategies. First, we design a novel hierarchical grid to decompose the simulation space, where we can locate particles in a more refined unit space. With this organization, particle distribution coherence in global memory is improved. As a result, global memory operations can be more efficient. Second, based on our well designed hierarchical grid, we propose a hierarchical neighbor search strategy for catering to the heterogeneous distribution of particles in cells, so we can search a neighbor particle in different-level grids. In a cell with dense particles, we can search particles in a higher-level grid whose unit space is more refined, which means we can narrow the search space for decreasing the access of false neighbor particles. In contrast, in a cell with sparse particles, we search particles in a lower-level grid whose unit space is relatively large, which means we can decrease the loop iterations when we search the entire neighbor cell. In this way, we can avoid the unnecessary overhead of loop iterations. After designing a reasonable neighbor search strategy, an efficient thread cooperation strategy can further improve the performance of our framework by realizing more potentials of GPGPU. The existing state-of-the-art method is concentrating on task assignment strategy for taking the full advantage of shared memory. The method decomposes particles in a cell into several tasks and then assigns a cooperation thread array (CTA) to each task. However, this method has not fully considered the uniformity of tasks belonging to the same cell, as these tasks always share a lot of particles with the same neighborhood. Finally, we propose a hierarchical task assignment strategy by merging such successive tasks into a larger task, which means we only load the same neighbor particles once and the corresponding CTAs are arranged to work together to handle the new task. Our method can greatly reduce the overload of neighbor particles and the overhead of neighbor search iterations. Through our comprehensive tests validated in practice, our work can exhibit 1.73× speedup when compared with other state-of-the-art GPGPU frameworks for SPH simulation.

1. Introduction and motivation

As a popular mesh-free Lagrangian-based method, Smooth Particle Hydrodynamics (SPH) has been widely employed in computational fluid dynamics, solid mechanics, and many other physics-based simulations pertinent to computer graphics. The underlying simulations requiring well detailed, large-scale, and complicated scenes will unavoidably increase a large number of particles, resulting in a significant time expense. Therefore, much research has been focusing on the performance improvement of SPH-centric algorithms in computer graphics.

To date, the rapid advancement of GPU's computational power, together with the software evolution of system development kits (e.g., CUDA), has led to increased interest in continuing to push forward the improved efficiency of GPU's parallel potential. Green [1] represented the earliest CUDA-based implementation of particle system using the uniform grid. A similar implementation, the earliest GPU based SPH [2] replaces the Cell Linked List (CLL) with Verlet list (VL) [3] [4], which can exhibit one to two order-of-magnitude speedup compared with the equivalent CPU implementation. DualSPHysics [5], an open-source SPH solver, provides similar implementations with several optimization strategies. Although these methods are efficient, they have not taken the full advantage of thread cooperation and hierarchical memory in GPU. GpuSPHASE [6,7], another open-source 2D SPH solver, presents a shared memory based implementation. As GpuSPHASE is a Verlet List based SPH algorithm, GpuSPHASE only loads the target particle data into shared memory, so the improvement of shared memory is limited. Later, Goswami et al. [8] first proposed a full shared memory

https://doi.org/10.1016/j.gmod.2020.101088

Received 26 April 2020; Received in revised form 26 July 2020; Accepted 10 August 2020 Available online 17 August 2020 1524-0703/© 2020 Elsevier Inc. All rights reserved.

^{*} Corresponding author. *E-mail address:* cbwang@sei.ecnu.edu.cn (C. Wang).

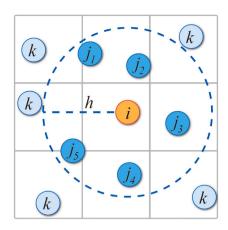


Fig. 1. The circle denoted by *i* represents target particle. The circles denoted by *j* represent the true neighbor particles, while the circles denoted by *k* represent the false neighbor particles. In addition, *h* is the influence radius of target particle.

based method. However, without a reasonable shared memory loading strategy and thread cooperation strategy, their method does not exhibit better performance than DualSPHysics. Most recently, Huang et al. [9] proposed a novel general parallel framework (called named GpuSPHCTA in this paper), which successfully breaks the performance bottleneck by using thread cooperation and reasonable full shared memory loading strategy.

In this paper, our ambitious goal is to further improve the computational performance based on the GpuSPHCTA framework, and at the same time we also retain the computational accuracy without any sacrifice of involved numerical techniques. We first propose a hierarchical perpendicular uniform grid to arrange world-space particles, and our method could greatly improve the coherence of particle distribution and decrease the overhead of thread synchronization. Based on our novel grid method, we propose an efficient neighbor traversal algorithm, which greatly decreases the access of false neighbor particles. In addition, we introduce a hierarchical task schedule strategy, which utilizes different thread groups with different thread size to cater to the heterogeneous distribution of particles in the simulation space. Our primary contributions are summarized below.

- A novel hierarchical perpendicular grid for improving the coherence of particle distribution, with a goal to reduce the time cost of thread synchronization.
- A well designed hierarchical neighbor traversal algorithm, which can greatly decrease the access time of false neighbor particles.
- A hierarchical task schedule strategy, which can cater to the distribution of particles in the simulation space, with a goal to reduce the overload of neighbor particles.

2. Related work

Accompany with the widely used of SPH in physically-based simulations, much research has been focusing on improving the performance of SPH-centric algorithms by GPU. Here we start by simply introducing the development of SPH in physically-based simulations, and several representative implementations of GPU based SPH algorithm will be provided.

2.1. SPH-based simulations

SPH is firstly proposed for astrophysical problem [10], and then SPH is extended to several physically-based simulations in computational physics and computer graphics. The core idea of this method is

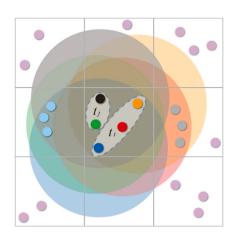


Fig. 2. The overview of inconsistent neighbor search situation inside tasks. The relative small circles represent particles, and the bigger circles represent the influence regions of corresponding particles. The ellipses denoted with t represent tasks. Only neighbor particles inside the influence region are true neighbor particles.

discretizing continuous fields by means of particles and approximating continuous properties of particles by weighted interpolation over smoothed functions $W(\mathbf{x}, h)$ [11]:

$$A(\mathbf{x}_i) = \sum_j m_j \frac{A_j}{\rho_j} W(\mathbf{x}_i - \mathbf{x}_j, h),$$
(1)

where $A(\mathbf{x}_i)$ is some consecutive attributes of the particle at position \mathbf{x}_i , such as force, *m* is the mass of particle and ρ is particle density. As shown in Fig. 1, smoothing radius *h* defines the influence space within which the contribution from the neighbor particles should be accumulated for target particle [9].

As a nature mass-conservation and flexible method, SPH has been widely used to simulate classical fluid flow [12,13]. To efficiently calculate and access neighborhoods in SPH, uniform grid is widely used to narrow neighbor space for particles [14]. Based on uniform grid, GpuSPHCTA [9] and DualSPHysics [5] employ CLL to search neighbor particles. Although CLL involves more false neighbor particles, this method is more general compared with VL, which has to maintain the information of neighbor particles for each target particle with substantial memory overhead [3,4]. Nevertheless, as mentioned above, CLL cannot guarantee the coherence of particles due to the atomic operations. The returned value of atomic operations is random, which means the index of particles inside each cell is arbitrary [9]. As a result, the particles in a task might distribute in different regions in a cell. For example (see Fig. 2), in the center cell, when task t_i loads the possible neighbor particles in the left neighbor cells, only the thread of deep blue particle calculates the contributions from possible neighbor particles. The other threads of task t_i have to wait for the thread of deep blue particle to end. Similarly, when t_i loads the possible neighbor particles in the right neighbor cells, the thread of deep blue particle has to wait for the other threads of task t_i to finish the calculation. Such a problem can be avoided if we arrange the deep blue particle into task t_i . So we need to decompose each cell to locate particles in a more refined unit space. In recent years, SPGrid, a popular hierarchical grid, associated with Morton encoding [15,16], is widely used in Material Point Method (MPM) [17,18] and exhibits better performance than OpenVDB [19], one of the most popular methods for storing volumetric data. Moreover, SPH can be also applied to solid simulations [20,21], as well as the coupling and interaction of solid and fluid [22,23]. In 2014, Ren et al. [24] extended WCSPH for simulating multiple fluid by a mixture model. And their method was then extended by Yan et al. [25] and Yang et al. [26] to cover the simulations of solid, including deformable solid and sand, as well as the transformation of different materials. In order to simulate incompressible fluid efficiently

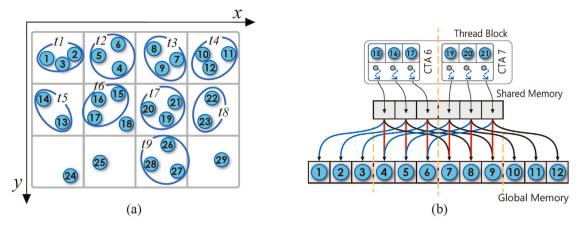


Fig. 3. (a) gives the overview of task division strategy of GpuSPHCTA. The smallest circles represent particles, and the inside number represents the index of particle. All particles inside a big circle represent a task. (b) gives the overview of memory operations in a thread block. GpuSPHCTA launches a thread block to deal with two tasks, and assigns each task with a CTA. The dot lines with arrow represent threads. Arrows of solid lines represent the direction of memory requests. The lines, between shared memory and global memory, shown with different colors, represent the order of memory requests. Blue first, red second, and black third. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

and stably, Bender et al. [27] proposed DFSPH in 2017. In 2019, Koschier et al. [28] surveyed various aspects of SPH simulations with a documented tutorial. Inspired by SPGrid, we design a novel hierarchical grid for SPH algorithm in this paper.

2.2. GPU implementations

Here we introduce GPU based SPH from three perspectives, early single GPU implementations, CUDA based single GPU implementations and multi-GPU implementations.

Traditional Single GPU, in 2004, Kipfer et al. [29] and Kolb et al. [30] proposed the earliest large particle system on GPU, which can simulate fluid with uncoupled particles. Kolb et al. [31] then proposed a GPU-based dynamic particle coupling method, which is the earliest implementation of SPH on GPU. Harada et al. [32] implemented the neighbor search process of SPH on GPUs. Their implementation was a fully GPU-based SPH method. As all of these methods were based on shader programs and occurring before the appearance of CUDA tool kit, it was difficult for these methods to well arrange the threads of GPU or manipulate the hierarchical memory resources. So the GPU's computational power was not fully utilized.

CUDA based Single GPU, in 2008, NVIDIA provided a CUDA based implementation of particle system on GPU [1], and a similar method [2] was provided in 2010, which is the earliest CUDA based implementation of SPH. In the same year, Goswami et al. [8] proposed the earliest full shared memory based method for SPH on GPU. However, their work did not have a better performance compared with DualSPHysics [5], a popular parallel framework for SPH, merged with several optimization strategies proposed by Domínguez et al. [33]. Fluids V.3 [34] uses counting sort algorithm to improve the efficiency of preprocessing. Xia et al. [35] proposed a new VL on GPU for SPH by using Quad-tree neighbor searching instead of uniform grid. Although this method can reduce the redundant computational cost, it cannot take the full advantage of parallelization on GPU. GpuSPHASE [6,7], an open-source 2D SPH solver, gives several optimization strategies. GpuSPHASE tries to use shared memory to reduce global memory access, but only target particles are loaded into shared memory, so the performance improvement of shared memory is quite limited. Ohno et al. [36] subdivided the cells of uniform grid to build VL. Their method can improve the spatial locality of particles, so as to reduce the access of false neighbor particles. But this method involves high overhead of loop iterations, which can greatly reduce the performance of algorithm. In recent years, the performance of single-GPU based SPH has come to a bottleneck. In 2019, Huang et al. [9] successfully

broke the performance bottleneck through the analysis of hardware architecture of GPU and taking relatively full use of computational power on GPU. This method can exhibit a good speedup, especially on dense particles, and keep the good performance on sparse particles by merging the traditional efficient method into their framework.

Multi-GPUs, in order to cater to the huge number of particles, distributing the computations among several GPUs is unavoidable. In 2011, Zhang et al. [37] implemented one of relatively early multi-GPUs SPH algorithm, using a dynamic load balancing method. The similar method was used by Hu et al. [38] with some optimization strategies in load balancing method and communication strategy. In 2012, Rustico et al. [39] divided the simulation space into different GPUs and kept a minimal overlapping of sub-domains to ensure each particle can get all true neighbor particles. Their work was then extended [40] in 2014. In 2013, Valdez-Balderas et al. [41] also proposed a spatial decomposition technique based multi-GPUs SPH using Message Passing Interface (MPI). This work was extended by Domínguez et al. [42] with an improved MPI, the new work can handle simulations with more than one hundred million particles. In 2017, an advanced load balancing scheme for multi-GPUs SPH was proposed by Verma et al. [43], this method can also scale well for smaller amount of particles. In conclusion, research of multi-GPU SPH almost focused on split strategies and data load balancing methods between different GPUs during these years. Therefore, the main performance bottleneck is still depending on the performance of each GPU node.

3. The foundation of our framework

Our framework is based on GpuSPHCTA [9], which is a state-ofthe-art parallel framework. Through designing more reasonable grid method and task assignment strategy, we significantly improve the efficiency of SPH algorithms on GPU. We briefly introduce GpuSPHCTA in this section.

GpuSPHCTA is a uniform grid based method, which divides particles into several tasks according to the warp-size (32 in current GPUs) for each uniform grid cell and launches a CTA for each task. Tasks are arranged in a task array according to the index of grid cell. The core idea of GpuSPHCTA is reasonably manipulating threads and shared memory for declining global memory access in an efficient way, as low-latency shared memory offers much higher bandwidth than global memory. Fig. 3(a) gives an example of task division strategy in GpuS-PHCTA (we assume the warp-size is 3 here). All particles in a task belong to a same cell, so these particles share the same neighbor cells, which means the neighbor particles loaded by a target particle can be

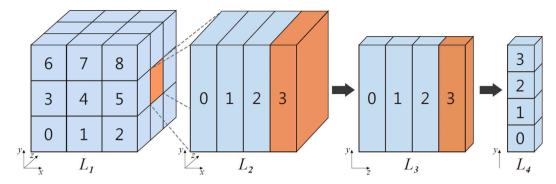


Fig. 4. The overview of our hierarchical perpendicular grid. The cuboids colored with red represent target cuboids, which are subdivided into 4 cuboids of next grid level. And the number represent cuboid index in current grid level. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

also used for other target particles in the same task. Fig. 3(b) gives the overview of the cooperation strategy of threads and the function of shared memory. GpuSPHCTA merges 27 neighbor cells into 9 cuboid cells for decreasing the loop iterations of neighbor loading. Each thread in the CTA loads a neighbor particle into shared memory according to the thread index in the CTA. Thus the requested neighbor particles are stored in consecutive global memory, which means the memory transactions can be combined in most cases. Then all target particles load neighbor particles from shared memory for the calculation of physical properties. With this organization, massive global memory access can be avoided. In order to further improve the cache hit rate, GpuSPHCTA arranges two CTAs as a CUDA thread block, which can be helpful for our task merging strategy. In addition, as traditional parallel strategy [5] is very efficient when the number of particles in a CTA task is very small, GpuSPHCTA combines both traditional parallel strategy and task schedule strategy for taking the full advantage of GPGPU computational resources. Therefore, GpuSPHCTA is an efficient and general parallel framework for SPH. The major process of GpuSPHCTA is summarized in Algorithm 1.

Alg	orithm 1 The summary of GpuSPHCTA.
	repeat
2:	//preprocessing
3:	sort particles
4:	calculate new hash value
5:	sort particles according to new hash value
6:	find the boundary value of particle groups
7:	arrange task array
8:	//variables calculation
9:	if thread block belong to sparse particles then
10:	for all sparse particle <i>i</i> do
11:	read particle <i>i</i> from global memory to registers
12:	calculate variables of particle <i>i</i>
13:	end for
14:	else
15:	conduct shared memory based strategy
16:	end if
17:	until the end of simulation
	In GpuSPHCTA, keeping the particles of a task in the same

In GpuSPHCTA, keeping the particles of a task in the same cell is a very important precondition. However, GpuSPHCTA cannot promise the coherence of particle distribution inside a cell, because GpuSPHCTA involves atomic operations in the sorting for particles and the returned value of atomic operations in CUDA is random. Therefore, the particles in a cell are disordered, which might increase the overhead of thread synchronization and decline cache hit rate. Moreover, the disordered distribution of particles inside one cell makes it quite difficult to decrease false neighbor particles. In order to reduce such problem, we propose a novel hierarchical grid method, and we will detail it in Section 4.1. As GpuSPHCTA is a CLL based framework, each target particle has to load all particles in neighbor cells for searching true neighbor

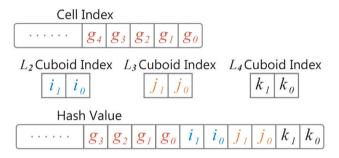


Fig. 5. The overview of our encoding method. We first calculate cell index *I* for each particle. Then we calculate the sub-cuboid index in L_2 , L_3 and L_4 cuboid. Finally, we calculate our new hash value through bit operations according to the cell index and three sub-cuboid indices.

particles, which can be optimized by reducing the search space in hierarchical grid, and we will detail it in . GpuSPHCTA is a single-level task framework, which means each CTA works separately. But we find that if two consecutive tasks belong to a same cell, such two tasks always share amount of same neighbor particles, which means loading neighbor particles for each task separately might result in unnecessary overloading. In order to reasonably avoid such overloading as much as possible, we proposed a hierarchical task assignment strategy to cater to the heterogeneous distribution of particles, and we will detail it in Section 4.3.

4. Novel hierarchical strategy

First, we will illustrate our hierarchical perpendicular grid. Furthermore, we will introduce our hierarchical neighbor search strategy. Finally, we will detail our novel hierarchical task assignment strategy.

4.1. Hierarchical perpendicular grid

In SPH, grid is just adopted for narrowing the neighbor space and there is no data stored in grid nodes. The grid method of SPH should be efficient for locating neighbor particles. However, both SPGrid and OpenVDB are tree-structure grid, so it is difficult to combine 27 neighbor cells into 9 cuboids [33] and further decrease invalid neighbor space in a cache-friendly manner on GPU. We need to access each neighbor cell separately, which unavoidably involves more loop iterations. Consequently, we cannot take the full advantage of memory consecutiveness. Therefore, we propose a novel hierarchical grid method associated with a novel encoding method to improve the coherence of particle distribution and make it easier and efficient to narrow neighbor space. Different from SPGrid, we decompose each unit space of different-level grids into four sub-cuboids. With this organization, we can keep the advantage of uniform grid and improve

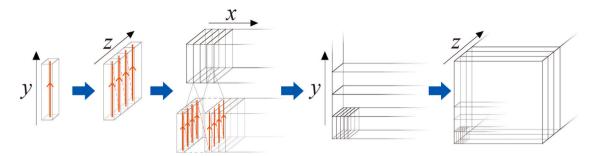


Fig. 6. The overview of perpendicular distribution of particles in the simulation space. The particle data of every four L_4 cubes remain consecutive along the *y*-axis in a L_3 cuboid. The particle data of every L_2 cuboid remain consecutive along the *x*-axis.

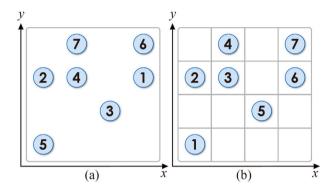


Fig. 7. (a) shows the arbitrary distribution of particles in a 2D-cell implemented with traditional uniform grid method. (b) shows the ordered distribution of particles in a 2D-cell implemented with our hierarchical grid method.

the coherence of particle distribution. Fig. 4 gives the overview of our hierarchical grid. For the convenience of illustration, we simply decompose simulation space into 27 cells (it is named with L_1 cuboid in this paper) as L_1 grid. The side length of L_1 grid cell is equal to the influence radius of particles. In L_1 grid level, we inherit the uniform grid encoding method to identify each grid cell, so our L_1 grid is the same with traditional uniform grid. In L_2 grid level, we decompose a cell into 4 cuboids (L_2 cuboid) along the *x*-axis, and we decompose a L_2 cuboid into 4 sub-cuboid (L_3 cuboid) along the *z*-axis as L_3 grid. In L_4 grid level, we decompose a L_3 cuboid into 4 cubes (L_4 cuboid) along the *y*-axis. The indices of L_2 , L_3 and L_4 cuboid range from 0 to 3, two bits are enough to encode L_x cuboids. Fig. 5 gives the overview of our encoding method for on our hierarchical grid. For each particle with position $\mathbf{P} = (x, y, z)$, we calculate cell (L_1 cuboid) index according to the following formula:

$$I(\mathbf{P}) = \left\lfloor \frac{x}{h} \right\rfloor + \left\lfloor \frac{y}{h} \right\rfloor \cdot X + \left\lfloor \frac{z}{h} \right\rfloor \cdot X \cdot Y,$$
(2)

where X, Y are the numbers of cells of the uniform grid in the *x*- and *y*-axis. According to our encoding method, we can get the coordinate value by the following formula:

$$I_{c}(\mathbf{P_{c}}) = \left\lfloor \frac{y_{c}}{h_{c}} \right\rfloor + \left\lfloor \frac{z_{c}}{h_{c}} \right\rfloor \cdot r + \left\lfloor \frac{x_{c}}{h_{c}} \right\rfloor \cdot r^{2},$$
(3)

where $\mathbf{P}_{\mathbf{c}} = (x_c, y_c, z_c)$ is the relative position inside corresponding cell, $h_c = h/r$ and r = 4. Finally, the new hash value of particles can be calculated by following formula:

$$H(\mathbf{P}) = I \cdot r^3 + I_c. \tag{4}$$

After sorting the new hash value of particles, all particles are then mapped to 1D memory and Fig. 6 shows the distribution trend of particles in simulation space. As particle data in different grid levels is consecutive along different axes and the axes are perpendicular to each other, the distribution trend in different grid levels is perpendicular. Algorithm 2 Grid Building and Counting Sort.

- 1: //generate grid information
- 2: calculate hash value of particle using Eq. (2), (3), (6)
- 3: C, f \leftarrow conduct CUDA *atomicAdd* operations on particle hash value
- 4: $\mathbf{O} \leftarrow$ conduct GPU-based prefix sum algorithm on \mathbf{C}
- 5: //sort particles
- 6: sort particles according to C, O, f
- 7: rebuild \mathbb{C} using Eq. (5)

The purpose of our perpendicular design is for trying to keep the contiguity of particles when we narrow the neighbor space, so as to avoid massive loop iterations. In addition, with a more refined unit space, our method can improve the coherence of particle distribution compared with the traditional uniform grid (see Fig. 7). Our implementation is summarized in Algorithm 2, where C is counting array of particles for hash value, O is offset array of particles for hash value, f is the indices array of particles inside cells and \mathbb{C} is counting array of particles for cells. In order to generate task array, we can rebuild \mathbb{C} by the following formula:

$$\mathbb{C}(\varepsilon) = \mathbf{O}((\varepsilon+1)\cdot r^3) - \mathbf{O}(\varepsilon\cdot r^3),\tag{5}$$

where ε is the cell index.

4.2. Hierarchical neighbor traversal strategy

Algorithm 3 Process of Building Cuboid Cells.

- 1: for all threads of a CTA do
- 2: $Cell_{pos} \leftarrow get cell position from target task$
- 3: //s is the thread index in CTA
- 4: **if** *s* < 9 **then**
- 5: locate each thread to cuboid neighbor cell *t*

6: $//x_{min}$ is the index of the most left L_2 cuboid

- 7: $//x_{max}$ is the index of the most right L_2 cuboid
- 8: $\mathbf{A}_s \leftarrow$ get particle offset according to x_{min} and x_{max}

9:
$$\mathbf{B}_{s} \leftarrow$$
 get particle count according to x_{min} and x_{max}

10: end if

- 11: **if** *s* == 31 **then**
- 12: SC \leftarrow get the number of L_2 cuboids in cuboid cell
- 13: end if
- 14: syncthreads
- 15: $\mathbf{f}_{s} \leftarrow 0, \ \mathbf{u}_{s} \leftarrow 0, \ \mathbf{l}_{s} \leftarrow 0$
- 16: end for

In the process of neighbor traversal, Fig. 2 shows that there are several false neighbor particles in neighbor cells. In order to decrease the access of false particles, some researchers propose VL based methods, which records all true neighbor particles for each particle. Obviously,

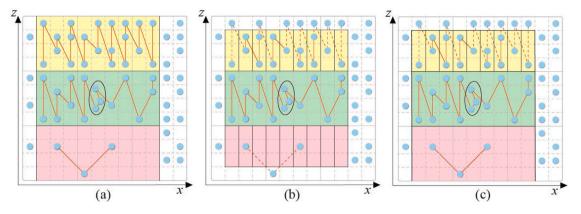


Fig. 8. The overview of our hierarchical neighbor traversal strategy. The blue circles represent particles. The ellipses represent tasks. The solid red lines represent two connected particles are consecutive in global memory and both particles should be loaded for the task. The regions colored with yellow, green and blue represent neighbor regions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

these VL based methods require much more memory space compared with CLL based methods, but the improved performance is quite limited. [36] proposed a simple decomposition method to construct VL. Their method also can be applied to CLL, but without a good organization of grid, this method would cause high overhead of loop iterations.

The main purpose of our hierarchical grid method is to efficiently reduce the neighbor space for target particles. Based on our grid method, we propose a novel neighbor traversal strategy, which dynamically loads neighbor particles in different-level grids according to the distribution and the continuity of particles. Our method can greatly decrease the access of false neighbor particles with relatively low overhead of loop iterations. For the convenience of illustration, we demonstrate our hierarchical neighbor traversal strategy in 2D simulation space. In the process of generating tasks, we calculate the range of L_x cuboid index for each task. In Fig. 8(a), all particles of the target task (circled with ellipse) are in the second L_2 cuboid of the center cell. According to the range of L_2 cuboid index, we can narrow the range of neighbor region in the *x*-axis. As the particles are consecutive along the *x*-axis, we just need to calculate the offset value of particles in the most left L_2 cuboid and the number of particles inside the consecutive region colored with same color (it is named with cuboid neighbor cell). In this grid level, we avoid the loop iterations in higher-level grid and decrease the access of some false neighbor particles. Algorithm 3 has outlined our method of narrowing the neighbor space in L_2 -level grid. \mathbf{f}_s represents the index of the cuboid neighbor cell, which is being accessed by threads. \mathbf{u}_s represents the count of neighbor particles, which have been accessed in cuboid cell \mathbf{f}_s . \mathbf{l}_s represents the index of L_2 cuboid, which is being accessed by threads.

In our hierarchical grid, we also can search neighbor particles in L_3 cuboid. The range of L_3 cuboid index of the task is from 2 to 3 (see Fig. 8(b)). Similarly, according to the range of L_3 cuboid index, we can further reduce the range of neighbor region in the z-axis. In L_3 grid level, reduce search space in the z-axis might break the continuity of neighbor particles, which means we cannot load neighbor particles in a consecutive memory domain. Instead, we need to load the particles in each L_2 sub-cuboid iteratively, which might result in the unnecessary waste of computational resources. For example, in Fig. 8(b), there are only two neighbor particles in the cuboid neighbor cell colored with pink. In this cuboid neighbor cell, if we search neighbor particles in each L_2 sub-cuboid iteratively, we only decrease the access of one false neighbor particle, while a lot of invalid loop iterations are produced. Similarly, if we simply load neighbor particles in each unit cell, there are much more invalid loop iterations, which is an unavoidable problem in the simple decomposition method. Therefore, before reducing the search space in the z-axis, we need to consider the distribution of particles in the corresponding neighbor space. In order to distinguish

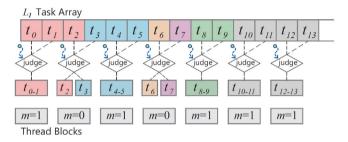


Fig. 9. The overview of our tasks merging strategy. The blocks colored with the same color represent these tasks belong to the same cell. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

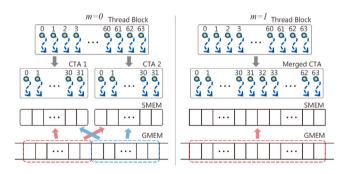


Fig. 10. The overview of different CTAs' cooperation strategy for different value of m.

different particle distributions in different neighbor space, we define a threshold \mathbb{T} . Through the comparison of particle count in each big cuboid neighbor cell and \mathbb{T} , we can determine whether to load neighbor particles in each L_2 sub-cuboid iteratively or directly load neighbor particles in the corresponding big cuboid neighbor cell. With this dynamic strategy ((see Fig. 8(c)), we can reduce the unnecessary overhead of loop iterations. In addition, with the help of shared memory and threads cooperation, our method can greatly improve the performance of GpuSPHCTA. Algorithm 4 has summarized our neighbor traversal implementation, where GMEM is global memory, SMEM is shared memory. We will illustrate the influence of invalid loop iterations and the advantage of dynamic strategy in Section 5.2.

Although we can also reduce the range of neighbor space in the *y*-axis, such operation will unavoidably result in much more overhead of loop iterations, which greatly declines the performance. Through our experiments, we find that it is sufficient to reduce the range of neighbor space in the *x*- and *z*-axis. The main purpose of L_4 grid is to improve particle coherence.

Algorithm 4 Loading Strategy of Neighbor Particles.

1: for all threads of a CTA do while true do 2: 3: if $\mathbf{u}_s == \mathbf{B}[\mathbf{f}_s]$ or $\mathbf{l}_s == \mathbf{SC}$ then $\mathbf{f}_s \leftarrow \mathbf{f}_s + 1, \ \mathbf{u}_s \leftarrow 0, \ \mathbf{l}_s \leftarrow 0$ 4: 5: if $9 \leq \mathbf{f}_d$ then break 6: 7: end if 8: end if **if** cuboid cell \mathbf{f}_s is cut in the *z*-axis && $\mathbf{B}[\mathbf{f}_s] > \mathbb{T}$ **then** 9: $\mathbf{a}_s \leftarrow$ get particle offset of L_2 sub-cuboid according to z_{min} , 10: z_{max} , $\mathbf{A}[\mathbf{f}_s]$ and $\mathbf{l}[\mathbf{f}_s]$ $\mathbf{b}_s \leftarrow$ get particle count of L_2 sub-cuboid according to z_{min} , 11: z_{max} , **A**[**f**_s] and **l**[**f**_s] if $\mathbf{u}_s == \mathbf{b}_s$ then 12: $\mathbf{l}_s \leftarrow \mathbf{l}_s + 1, \ \mathbf{u}_s \leftarrow 0$ 13: if $l_s == SC$ then 14: continue 15: end if 16: 17: end if 18: if $s < \min(32, \mathbf{b}[\mathbf{f}_n] - \mathbf{u}_n)$ then 19: $pi \leftarrow \mathbf{a}_s + \mathbf{u}_s + s$ read particle pi from GMEM to SMEM 20: end if 21: 22: $\mathbf{u}_{s} \leftarrow \mathbf{u}_{s} + \min(32, \mathbf{b}_{s} - \mathbf{u}_{s})$ 23: else 24: if $s < \min(32, \mathbf{B}[\mathbf{f}_s] - \mathbf{u}_s)$ then $pi \leftarrow \mathbf{A}[\mathbf{f}_s] + \mathbf{u}_s + s$ 25: read particle pi from GMEM to SMEM 26: 27: end if 28: $\mathbf{u}_{s} \leftarrow \mathbf{u}_{s} + \min(32, \mathbf{B}[\mathbf{f}_{s}] - \mathbf{u}_{s})$ end if 29: syncthreads 30: calculate variables of target particle 31: end while 32: 33: end for

4.3. Hierarchical task schedule strategy

With the help of hierarchical perpendicular grid, the coherence of particle distribution is improved. Consequently, the locality of consecutive tasks is improved. Therefore, two consecutive tasks in the same cell always share a great part of neighbor particles (we name these tasks as Task Pair). In GpuSPHCTA, each CTA deals with one task separately, the overlap of neighbor particles is overloaded for Task Pair, which is an unnecessary waste of computational resources. So we proposed a hierarchical task assignment strategy by merging two consecutive tasks in the same cell into a bigger task. There are two kinds of tasks in our framework (we name these two kinds of tasks as K_1 task and K_2 task). These two kinds of tasks are launched simultaneously without any additional time cost of CUDA kernel function launching. And we will detail our strategy here.

As shown in Fig. 9, the particles of each cell are divided into several K_1 tasks. In order to find the K_1 tasks, which can be merged as L_2 tasks. We assign a thread for each task pair to determine whether these two K_1 tasks can be merged. If such two K_1 tasks belong to the same cell, we merge the two K_1 tasks into a K_2 task. In our implementation, we propose a signal value *m* to denote tasks, if m = 1, K_1 task has been merged; if m = 0, K_1 task has not been merged.

As the size of tasks might be different in our hierarchical task strategy, we should launch CUDA thread blocks with different thread sizes for catering to different tasks. However, in CUDA model, we can only launch CUDA thread blocks with same thread size. We thus use threads merging strategy to construct different thread groups with different thread sizes. As we have recorded the signal value *m* for each task to determine whether the task should be merged, we can easily identify different size tasks in different thread blocks. In GpuSPHCTA, the thread index of each CTA is calculated according to $s = \tau \% 32$, and the CTA index is calculated according to $w = \lfloor \tau / 32 \rfloor$. In order to identify different size tasks, we use a new thread index calculation function in the following form:

$$s = \tau \% 32 + m \cdot w \cdot 32,\tag{6}$$

where τ is the thread index of CUDA thread block.

Fig. 10 shows the differences of thread blocks with different values of *m*. If m = 0, two CTAs deal with corresponding K_1 tasks separately; if m = 1, two CTAs are merged as 64 threads group; threads in a new thread group working together to load neighbor particles from global memory to shared memory (when two tasks in a thread block are denoted to be merged, the particle distribution range of new task might be changed, so we need to update the maximum and minimum value of L_2 cuboid index and L_3 cuboid index according to the corresponding values of merged tasks). Each target particle in the corresponding thread block loads all these neighbor particles to calculate attributes. Therefore, our merged task assignment strategy can avoid loading overlap of neighbor particles. Moreover, our task assignment strategy can also reduce the overhead of loop iterations, because the new thread group can load twice the number of neighbor particles in each iteration. K_1 task strategy can reduce the idle threads, and K_2 task strategy can reduce the unnecessary loading of particles. So our hierarchical task strategy can well cater to the heterogeneous particle distribution in different cells. The key components of our framework are summarized in Algorithm 4

Algorithm	5	The	Overviev	v of	Our	Framework.
-----------	---	-----	----------	------	-----	------------

1: repeat

- 2: //preprocessing
- 3: conduct preprocessing according to Alg. 2
- 4: merge task pair according to the process of Fig. 9
- 5: update the range of L_2 and L_3 cuboid index for K_2 tasks
- 6: //each attributes calculation step
- 7: generate cuboid cells according to Alg. 3
- 8: load neighboring particle data according to Alg. 4
- 9: calculate attributes for target particles
- 10: **until** the end of simulation

5. Experimental results and evaluations

In this section, we use six benchmarks implemented with different SPH algorithms to evaluate our framework (NEW). The comparison objects are DualSPHysics (TRA) and GpuSPHCTA. The experiments are performed on different hardware platforms as follows:

- Intel(R) Core(TM) i7 9700 K and NVIDIA Geforce GTX 970 (Maxwell Architecture).
- Intel(R) Core(TM) i7 9700 K and NVIDIA Geforce GTX 1080 (Pascal Architecture).
- Intel(R) Core(TM) i7 9750H and NVIDIA Geforce RTX 2070 (Turing Architecture).

5.1. Parameter settings and effects

In order to find the correlation between particle number and speedup rate of our framework compared with GpuSPHCTA and Dual-SPHysics, the benchmark we used here is cuboid with constant size, which means we omit the process of updating the position of particles for ensuring that the average particle number of either nonempty uniform grid cells or our L1 grid cells (it is named with AC, which indicates the scale of the number of neighbor particles) keeps constant

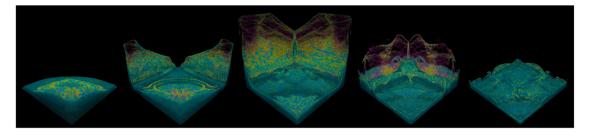


Fig. 11. The scene of dam break shows the hierarchical task structure in our framework. The green particles are arranged into K_1 tasks; The yellow particles are arranged into K_2 tasks; the red particles are dealt with traditional method (DualSPHysics). In our experiments, our framework can exhibit 1.73x speedup compared with GpuSPHCTA without any compromise of numerical accuracy and sacrifice of simulation detail. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

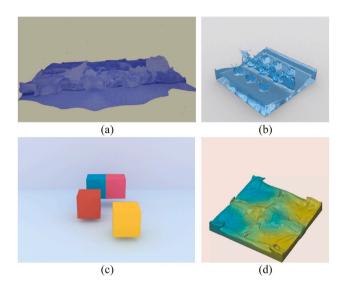


Fig. 12. Four benchmarks for evaluating the performance of our framework tested with four different SPH algorithms. Benchmark (a) is ocean wave. Benchmark (b) is the dropping of bunny rabbits. Benchmark (c) is the interaction of dropping elastic cubes. Benchmark (d) is the interaction of different miscible fluids.

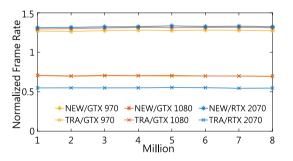


Fig. 13. The performance results of different frameworks tested with different particle numbers on different hardware platforms. The frame rate is normalized to the performance of GpuSPHCTA.

in each frame. The number of particles ranges from one million to eight million, and AC is set to 297. Fig. 13 shows the results of our experiments, which indicate that the speedup rate of our framework has no obvious correlation with particle number.

In addition, we use the same benchmark to reveal the correlation between AC and the speedup rate of our framework. Table 1 gives the key information of the test cases and detailed elapsed time. The results of our test cases indicate that the speedup rate of our framework compared with GpuSPHCTA and DualSPHysics is growing with AC. Both Table 1 and Fig. 13 show that shared memory based method (GpuSPHCTA and our method) can exhibit better speedup on RTX

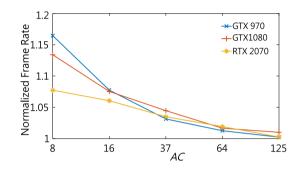


Fig. 14. The performance results of our grid method. The frame rate is normalized to the performance of SPGrid.

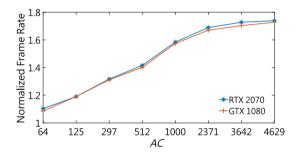


Fig. 15. The performance results of dam break tested with different *AC*. The frame rate is normalized to the performance of GpuSPHCTA.

2070 compared with DualSPHysics (our method can exhibit $2.38 \times$ speedup on RTX 2070 tested with case 3). In addition, we find that the traditional method (DualSPHysics) can exhibit better performance on GTX 1080.

Overall, the speedup rate of our framework is closely related to *AC*, regardless of particle number. In our test cases, the performance of our method is the best while the traditional method is relatively slow.

5.2. Improved performance

The experiments mentioned above reveal that AC is the key parameter. However, the experiments on cuboid with constant size cannot reveal real performance improvement of our method. AC might be different in each frame, which is the result of the advection of particles. Thus we need to test our framework with real simulations, and the benchmark we used here is dam break (see Fig. 11).

First, we compare our grid method with SPGrid [17] on different GPUs. Fig. 14 shows the results of our experiments, which indicate that our grid method can obviously exhibit performance improvement if AC is relatively small. When AC exceeds 125, the performance of our grid method and SPGrid is about the same. Our grid method can reduce loop iterations, but the time saved from loop iterations accounts for a

Table 1

Test case settings and simulation results. The results are the average of the first 640 time steps. Pre is preprocessing overhead. Dfor is the overhead for force computation. Tot is total simulation overhead.

GPU		#particles	AC	DualSPHysics (ms)		GpuSPHCTA (ms)			OUR METHOD(ms)			
di C				Pre	Dfor	Tot	Pre	Dfor	Tot	Pre	Dfor	Tot
GTX 970	case 1		64	8.9	510.3	519.3	13.5	331.4	344.9	15.0	326.3	341.3
	case 2		125	9.2	990.7	999.9	14.1	665.1	679.2	15.0	576.4	591.4
	case 3		297	10.0	2315.2	2325.2	15.6	1626.0	1641.6	15.7	1264.4	1280.1
	case 1	0.000.000	64	8.2	227.7	235.9	10.8	147.2	158	11.6	139.7	151.3
GTX 1080	case 2	8,000,000	125	7.9	439.9	447.8	11.1	293.6	304.7	11.8	246.1	257.9
	case 3		297	8.3	1015.6	1023.9	12.0	705.3	717.3	12.3	532.5	544.8
RTX 2070	case 1		64	15.9	247.6	263.5	18.5	122.4	140.9	16.6	121.0	137.6
	case 2		125	15.8	501.7	517.5	18.8	262.0	280.8	17.6	220.1	237.7
	case 3		297	18.3	1171.9	1190.2	21.2	632.8	654.0	17.2	475.0	492.2

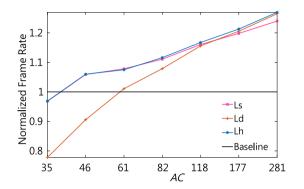


Fig. 16. The performance results of neighbor traversal strategies. The frame rate is normalized to the performance of GpuSPHCTA.

smaller part of the total time when AC is increased. Both SPGrid and our grid can improve the coherence of particle distribution, but our grid method can make it much easier to reduce neighbor space.

Second, we compare our framework with GpuSPHCTA (the performance of GpuSPHCTA is better than DualSPHysics in our experiments). As the efficiency of GTX 970 is the slowest in our three GPUs, we will not conduct our next experiments on GTX 970. Fig. 15 also shows that the speedup rate of our framework is growing with an initial *AC*. As a simulation with initial *AC* exceeding 5000 is rare, we have not tested our framework with bigger initial *AC*. In our experiments, our framework can exhibit $1.73 \times$ speedup.

Third, we test the performance of our dynamic strategy for reducing neighbor space on RTX 2070. Fig. 16 shows the results of our experiments. Ls represents the method which only reduce neighbor space by L_2 cuboid index (see Fig. 8(a)); Ld represents the method which straightforwardly reduce neighbor space by L_2 and L_3 cuboid index (see Fig. 8(b)); Lh represents our dynamic strategy. In the experiments whose AC is smaller than 120, the performance of Ls is better than Ld. The reason is that there are several unnecessary loop iterations in Ld (see the example shown in the red region of Fig. 8(b)), which indicates that massive loop iterations can obviously decrease the algorithm performance. In the experiments whose AC is bigger than 120, the performance of Ld is better than Ls, because the time cost of additional loop iteration in Ld is smaller than the time saved by avoiding loading some false neighbor particles. As Lh possesses both the advantage of Ls and Ld, Lh performs well in all these experiments (T is set to 90). Moreover, we find that GpuSPHCTA has better performance when initial AC is smaller than 40, which is the result of the more time overhead of preprocessing in our framework when AC is small.

Finally, as our grid method can be easily extended to other tile sizes, we further explore the influence of different tile settings on RTX 2070, such as $5 \times 5 \times 5$ tile, which is used in the FLIP method [44]. Fig. 17 shows the results of our experiments. The blue line indicates that $3 \times 3 \times 3$ tile can exhibit better performance when the *AC* is

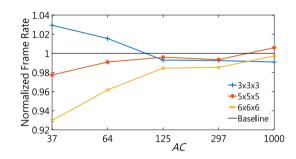


Fig. 17. The performance results of different tile settings. The frame rate is normalized to the performance of $4 \times 4 \times 4$ tile.

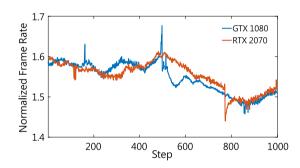


Fig. 18. The performance results of ocean wave simulation. The frame rate is normalized to the performance of GpuSPHCTA.

relatively small, because smaller tile setting involves smaller overhead of preprocessing. The red line indicates that $5 \times 5 \times 5$ tile performs better when the *AC* is bigger than 1000, because bigger tile setting can decrease more invalid neighbor space. The yellow line shows that $6 \times 6 \times 6$ tile performs worst in our experiments, because the overhead of preprocessing is significantly increased with tile size. Therefore, there is a balance between tile size (neighbor space) and the overhead of preprocessing. $4 \times 4 \times 4$ tile is a reasonable choice.

5.3. Simulation evaluations

To some extent, dam break is a simple physical simulation, and there are several variants of SPH for some relatively complex simulations. In order to reveal the generalization ability and availability of our framework, we test our framework with the other four benchmarks implemented with four different SPH algorithms.

The first benchmark is ocean wave implemented with WCSPH [45] (see Fig. 12(a)). The initial AC of this benchmark is about 1000, and the number of simulation particles is 17,970,160. Fig. 18 gives the test results of our framework compared with GpuSPHCTA on different hardware platforms. It can be seen from Fig. 18 that the speedup rate keeps going up and going down, because the particles keep splashing

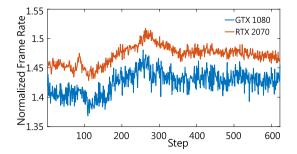


Fig. 19. The performance results of dropping bunny rabbits simulation. The frame rate is normalized to the performance of GpuSPHCTA.

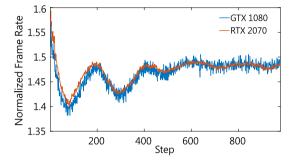


Fig. 20. The performance results of multiple fluid simulation. The frame rate is normalized to the performance of GpuSPHCTA.

and converging, which means AC keeps going up and going down. Our framework can exhibit about $1.55 \times$ speedup.

The second benchmark is the dropping of bunny implemented with PCISPH [46] (see Fig. 12(b)). PCISPH involves much computation process for great incompressibility. The initial AC of this benchmark is about 500, and the number of simulation particles is 1,516,563. The test results (see Fig. 19) indicate that the change of speedup rate is relatively small, which is the result of the great incompressibility of PCISPH. Furthermore, Fig. 19 shows that our framework can exhibit better speedup on RTX 2070 compared with GTX 1080; our framework can exhibit about 1.43× speedup on GTX 1080, 1.47× speedup on RTX 2070.

The third benchmark is the mixture of two different fluid implemented with multiple fluid SPH [24] (see Fig. 12(d)). This SPH algorithm needs to calculate the attributes of different fluids, so the simulation of this benchmark is complex. The initial *AC* of this benchmark is about 500, and the number of simulation particles is 3,169,044. Similarly, the speedup rate changes with *AC*, and finally keeps stable as the fluid almost keeps constant (see Fig. 20). our framework can exhibit about 1.47× speedup.

The fourth benchmark is elastic solid implemented with multiple phase SPH [25] (see Fig. 12(c)), which is the most complex simulation algorithm in our experiments. The initial *AC* of this benchmark is about 500, and the number of simulation particles is 2,788,192. Fig. 21 shows the performance of our framework. There is no splash of particles in the simulation of elastic solid and the deformation of elastic solid is relatively small, which means the change of *AC* is very small. Therefore, the relative performance of our framework almost keeps stable in this simulation. Our framework can exhibit about 1.61× speedup on GTX 1080, 1.63× speedup on RTX 2070.

6. Conclusion and future works

This paper has detailed an efficient framework with well designed hierarchical task assignment and neighbor search strategies in a new hierarchical grid. The framework takes the full advantage of GPGPU

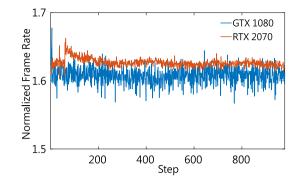


Fig. 21. The performance results of elastic solids simulation. The frame rate is normalized to the performance of GpuSPHCTA.

and can greatly reduce the cost of computational resources, so as to further break the performance bottleneck of SPH algorithms based on GpuSPHCTA. The framework can exhibit $1.73 \times$ speedup without any compromise of numerical accuracy and sacrifice of simulation detail. Therefore, our method can be applied to most of the existing SPH algorithms directly. Even though the framework could not exhibit magnificent speedup compared with GpuSPHCTA, the current solution is both efficient and of general purpose.

As shown in Fig. 5, we shift the binary code of traditional hash value (cell index in this paper) to the left by 6 bits, which means that the counting array of traditional uniform grid used for counting in the sorting algorithm is expanded by 64 times. As a result, the sorting cost is unavoidably increased. In addition, we have to maintain the information of spatial range for computational tasks, so our new strategies need additional preprocess routines. Thus, the preprocessing cost is more than that in GpuSPHCTA, which means our framework might not be suitable for simulations with very few and sparse particles, whose preprocessing cost occupies a significant portion of simulation time. Through our tests, we observe that the increased overhead mainly results from the sorting process. Hence we need to design a much more efficient GPU based sorting algorithm to further improve the performance of our framework. Moreover, as shown in Figs. 15 and 16, compared with GpuSPHCTA, the improvement of our framework is quite significant when AC is relatively big. On the other hand, GpuSPHCTA can exhibit better performance than our method when AC is very small. Therefore, we could merge GpuSPHCTA into our framework to conduct the simulations whose AC is very small for avoiding the performance degradation.

Although we define a threshold \mathbb{T} to identify different neighbor traversal strategies in different neighbor regions, constant \mathbb{T} might not be best suitable to the heterogeneous distribution of particles well, so we need a better strategy to dynamically change the value of \mathbb{T} for catering to the heterogeneous distribution of particles. Besides, we wish to design a much more general framework, which not only has a better fit for SPH algorithms but also could be applied to other particle systems such as Material Point Method (MPM) in our future work. We also expect to further utilize the concurrency of CTA to design a novel particle merging strategy toward the further improved implementation of a novel adaptive SPH based on GPGPU.

CRediT authorship contribution statement

Kemeng Huang: Conceptualization, Methodology, Software, Visualization, Writing - original draft. Zipeng Zhao: Data curation, Visualization, Writing - original draft. Chen Li: Methodology, Writing - review & editing. Changbo Wang: Supervision, Funding acquisition, Project administration, Validation, Writing - review & editing. Hong Qin: Supervision, Funding acquisition, Methodology, Validation, Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The authors would like to especially thank all reviewers for their sincere and thoughtful suggestions. This paper is partially supported by Natural Science Foundation of China under Grants 61532002 and 61672237, National Science Foundation of USA (IIS-1715985 and IIS-1812606).

Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.gmod.2020.101088.

References

- [1] S. Green, Cuda particles, NVIDIA Whitepaper 2 (3.2) (2008) 1.
- [2] A. Hérault, G. Bilotta, R.A. Dalrymple, Sph on gpu with cuda, J. Hydraul. Res. 48 (S1) (2010) 74–79.
- [3] J.M. Domí nguez, A.J.C. Crespo, M. Gómez-Gesteira, J.C. Marongiu, Neighbour lists in smoothed particle hydrodynamics, Internat. J. Numer. Methods Fluids 67 (12) (2011) 2026–2042.
- [4] D. Winkler, M. Rezavand, W. Rauch, Neighbour lists for smoothed particle hydrodynamics on GPUs, Comput. Phys. Comm. 225 (2018) 140–148.
- [5] A.J.C. Crespo, J.M. Domínguez, B.D. Rogers, M. Gómez-Gesteira, S.M. Longshaw, R.B. Canelas, R. Vacondio, A. Barreiro, O. García-Feal, Dualsphysics: Open-source parallel CFD solver based on smoothed particle hydrodynamics (SPH), Comput. Phys. Comm. 187 (2015) 204–216.
- [6] D. Winkler, M. Meister, M. Rezavand, W. Rauch, Gpusphase a shared memory caching implementation for 2d SPH using CUDA, Comput. Phys. Comm. 213 (2017) 165–180.
- [7] D. Winkler, M. Rezavand, M. Meister, W. Rauch, Gpusphase a shared memory caching implementation for 2d SPH using CUDA (new version announcement), Comput. Phys. Comm. 235 (2019) 514–516.
- [8] P. Goswami, P. Schlegel, B. Solenthaler, R. Pajarola, Interactive SPH simulation and rendering on the GPU, in: Proceedings of the 2010 Eurographics/ACM SIGGRAPH Symposium on Computer Animation, SCA 2010, Madrid, Spain, 2010, Eurographics Association, 2010, pp. 55–64.
- [9] K. Huang, J. Ruan, Z. Zhao, C. Li, C. Wang, H. Qin, A general novel parallel framework for SPH-centric algorithms, Proc. ACM Comput. Graph. Interact. Tech. 2 (1) (2019) 7:1–7:16.
- [10] R.A. Gingold, J.J. Monaghan, Smoothed particle hydrodynamics: theory and application to non-spherical stars, Mon. Not. R. Astron. Soc. 181 (3) (1977) 375–389.
- [11] J.J. Monaghan, Smoothed particle hydrodynamics, Annu. Rev. Astron. Astrophys. 30 (1) (1992) 543–574.
- [12] M. Müller, D. Charypar, M.H. Gross, Particle-based fluid simulation for interactive applications, in: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, San Diego, CA, USA, July 26-27, 2003, pp. 154–159.
- [13] M. Ihmsen, J. Orthmann, B. Solenthaler, A. Kolb, M. Teschner, SPH fluids in computer graphics, in: Eurographics 2014 - State of the Art Reports, Strasbourg, France, April 7-11, 2014, pp. 21–42.
- [14] M. Ihmsen, N. Akinci, M. Becker, M. Teschner, A parallel SPH implementation on multi-core CPUs, Comput. Graph. Forum 30 (1) (2011) 99–112.
- [15] G. Morton, A computer oriented geodetic data base and a new technique in file sequencing, 1966.
- [16] D. Holzmüller, Efficient neighbor-finding on space-filling curves, 2017, CoRR abs/1710.06384 arXiv:1710.06384.
- [17] R. Setaluri, M. Aanjaneya, S. Bauer, E. Sifakis, Spgrid: a sparse paged grid structure applied to adaptive smoke simulation, ACM Trans. Graph. 33 (6) (2014) 205:1–205:12.
- [18] M. Gao, X. Wang, K. Wu, A. Pradhana, E. Sifakis, C. Yuksel, C. Jiang, GPU optimization of material point methods, ACM Trans. Graph. 37 (6) (2018) 254:1–254:12.

- [19] K. Museth, VDB: high-resolution sparse volumes with dynamic topology, ACM Trans. Graph. 32 (3) (2013) 27:1–27:22.
- [20] M. Müller, R. Keiser, A. Nealen, M. Pauly, M.H. Gross, M. Alexa, Point based animation of elastic, plastic and melting objects, in: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Grenoble, France, August 27-29, 2004, pp. 141–151.
- [21] D. Gerszewski, H. Bhattacharya, A.W. Bargteil, A point-based method for animating elastoplastic solids, in: Proceedings of the 2009 ACM SIG-GRAPH/Eurographics Symposium on Computer Animation, SCA 2009, New Orleans, Louisiana, USA, August 1-2, 2009, pp. 133–138.
- [22] R. Keiser, B. Adams, D. Gasser, P. Bazzi, P. Dutré, M.H. Gross, A unified Lagrangian approach to solid-fluid animation, in: Symposium on Point Based Graphics, Stony Brook, NY, USA, 2005. Proceedings, pp. 125–133.
- [23] N. Akinci, J. Cornelis, G. Akinci, M. Teschner, Coupling elastic solids with smoothed particle hydrodynamics fluids, J. Visualiz. Comput. Anim. 24 (3-4) (2013) 195–203.
- [24] B. Ren, C. Li, X. Yan, M.C. Lin, J. Bonet, S. Hu, Multiple-fluid SPH simulation using a mixture model, ACM Trans. Graph. 33 (5) (2014) 171:1–171:11.
- [25] X. Yan, Y. Jiang, C. Li, R.R. Martin, S. Hu, Multiphase SPH simulation for interactive fluids and solids, ACM Trans. Graph. 35 (4) (2016) 79:1–79:11.
- [26] T. Yang, J. Chang, M.C. Lin, R.R. Martin, J.J. Zhang, S. Hu, A unified particle system framework for multi-phase, multi-material visual simulations, ACM Trans. Graph. 36 (6) (2017) 224:1–224:13.
- [27] J. Bender, D. Koschier, Divergence-free SPH for incompressible and viscous fluids, IEEE Trans. Vis. Comput. Graph. 23 (3) (2017) 1193–1206.
- [28] D. Koschier, J. Bender, B. Solenthaler, M. Teschner, Smoothed particle hydrodynamics techniques for the physics based simulation of fluids and solids, in: W. Jakob, E. Puppo (Eds.), Eurographics 2019 - Tutorials, The Eurographics Association, 2019.
- [29] P. Kipfer, M. Segal, R. Westermann, UberFlow: a GPU-based particle engine, in: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hardware 2004, Grenoble, France, August 29-30, 2004, pp. 115–122.
- [30] A. Kolb, L. Latta, C. Rezk-Salama, Hardware-based simulation and collision detection for large particle systems, in: Proceedings of the ACM SIG-GRAPH/EUROGRAPHICS Symposium on Graphics Hardware 2004, Grenoble, France, August 29-30, 2004, pp. 123–131.
- [31] A. Kolb, N. Cuntz, Dynamic particle coupling for GPUbased fluid simulation, in: Proceedings of 18th Symposium on Simulation Technique, 2005, pp. 722–727.
- [32] T. Harada, S. Koshizuka, Y. Kawaguchi, Smoothed Particle Hydrodynamics on GPUs, in: Proceedings of Computer Graphic, 2007, pp. p. 63–70.
- [33] J.M. Domínguez, A.J.C. Crespo, M. Gómez-Gesteira, Optimization strategies for CPU and GPU implementations of a smoothed particle hydrodynamics method, Comput. Phys. Comm. 184 (3) (2013) 617–627.
- [34] R. Hoetzlein, Fast fixed-radius nearest neighbors: interactive million-particle fluids, in: GPU Technology Conference (GTC), Santa Clara, CA, 2014.
- [35] X. Xia, Q. Liang, A GPU-accelerated smoothed particle hydrodynamics (SPH) model for the shallow water equations, Environ. Modell Softw. 75 (2016) 28–43.
- [36] K. Ohno, T. Nitta, H. Nakai, SPH-based fluid simulation on GPU using verlet list and subdivided cell-linked list, in: Fifth International Symposium on Computing and Networking, CANDAR 2017, Aomori, Japan, November 19-22, 2017, pp. 132–138.
- [37] F. Zhang, L. Hu, J. Wu, X. Shen, A SPH-based method for interactive fluids simulation on the multi-GPU, in: Proceedings of the 10th International Conference on Virtual Reality Continuum and Its Applications in Industry, VRCAI 2011, Hong Kong, China, December 11-12, 2011, pp. 423–426.
- [38] L. Hu, X. Shen, X. Long, Research on SPH parallel acceleration strategies for multi-GPU platform, in: Advanced Parallel Processing Technologies - 10th International Symposium, APPT 2013, Stockholm, Sweden, August 27-28, 2013, Revised Selected Papers, 2013, pp. 104–118.
- [39] E. Rustico, G. Bilotta, G. Gallo, A. Hérault, C.D. Negro, Smoothed particle hydrodynamics simulations on multi-GPU systems, in: Proceedings of the 20th Euromicro International Conference on Parallel, Distributed and Network-Based Processing, PDP 2012, Munich, Germany, February 15-17, 2012, pp. 384–391.
- [40] E. Rustico, G. Bilotta, A. Hérault, C.D. Negro, G. Gallo, Advances in multi-GPU smoothed particle hydrodynamics simulations, IEEE Trans. Parallel Distrib. Syst. 25 (1) (2014) 43–52.
- [41] D. Valdez-Balderas, J.M. Domínguez, B.D. Rogers, A.J.C. Crespo, Towards accelerating smoothed particle hydrodynamics simulations for free-surface flows on multi-GPU clusters, J. Parallel Distrib. Comput. 73 (11) (2013) 1483–1493.
- [42] J.M. Domínguez, A.J.C. Crespo, D. Valdez-Balderas, B.D. Rogers, M. Gómez-Gesteira, New multi-GPU implementation for smoothed particle hydrodynamics on heterogeneous clusters, Comput. Phys. Comm. 184 (8) (2013) 1848–1860.

K. Huang et al.

Graphical Models 111 (2020) 101088

- [43] K. Verma, K. Szewc, R. Wille, Advanced load balancing for SPH simulations on multi-GPU architectures, in: 2017 IEEE High Performance Extreme Computing Conference, HPEC 2017, Waltham, MA, USA, September 12-14, 2017, pp. 1–7.
- [44] M.B. Nielsen, R. Bridson, Spatially adaptive FLIP fluid simulations in bifrost, in: Special Interest Group on Computer Graphics and Interactive Techniques Conference, SIGGRAPH '16, Anaheim, CA, USA, July 24-28, 2016, Talks, ACM, 2016, pp. 41:1–41:2.
- [45] M. Becker, M. Teschner, Weakly compressible SPH for free surface flows, in: M. Gleicher, D. Thalmann (Eds.), Proceedings of the 2007 ACM SIG-GRAPH/Eurographics Symposium on Computer Animation, SCA 2007, San Diego, California, USA, August 2-4, 2007, Eurographics Association, 2007, pp. 209–217.
- [46] B. Solenthaler, R. Pajarola, Predictive-corrective incompressible SPH, ACM Trans. Graph. 28 (3) (2009) 40.