
Graphical Models 111 (2020) 101088

A
1

Contents lists available at ScienceDirect

Graphical Models

journal homepage: www.elsevier.com/locate/gmod

Novel hierarchical strategies for SPH-centric algorithms on GPGPU
Kemeng Huang a, Zipeng Zhao a, Chen Li a, Changbo Wang a,∗, Hong Qin b

a School of Computer Science and Technology, East China Normal University, Shanghai, China
b Department of Computer Science, Stony Brook University, Stony Brook, USA

A R T I C L E I N F O

Keywords:
Smoothed Particle Hydrodynamics (SPH)
Hierarchical Perpendicular Grid (HPG)
Neighbor search
Hierarchical task assignment

A B S T R A C T

This research further extends an existing state-of-the-art GPU framework of SPH simulation for better
performance without any compromise of numerical accuracy and sacrifice of simulation detail. Towards this
grand goal, we devise three new strategies. First, we design a novel hierarchical grid to decompose the
simulation space, where we can locate particles in a more refined unit space. With this organization, particle
distribution coherence in global memory is improved. As a result, global memory operations can be more
efficient. Second, based on our well designed hierarchical grid, we propose a hierarchical neighbor search
strategy for catering to the heterogeneous distribution of particles in cells, so we can search a neighbor particle
in different-level grids. In a cell with dense particles, we can search particles in a higher-level grid whose unit
space is more refined, which means we can narrow the search space for decreasing the access of false neighbor
particles. In contrast, in a cell with sparse particles, we search particles in a lower-level grid whose unit space
is relatively large, which means we can decrease the loop iterations when we search the entire neighbor
cell. In this way, we can avoid the unnecessary overhead of loop iterations. After designing a reasonable
neighbor search strategy, an efficient thread cooperation strategy can further improve the performance of our
framework by realizing more potentials of GPGPU. The existing state-of-the-art method is concentrating on
task assignment strategy for taking the full advantage of shared memory. The method decomposes particles in
a cell into several tasks and then assigns a cooperation thread array (CTA) to each task. However, this method
has not fully considered the uniformity of tasks belonging to the same cell, as these tasks always share a lot of
particles with the same neighborhood. Finally, we propose a hierarchical task assignment strategy by merging
such successive tasks into a larger task, which means we only load the same neighbor particles once and the
corresponding CTAs are arranged to work together to handle the new task. Our method can greatly reduce the
overload of neighbor particles and the overhead of neighbor search iterations. Through our comprehensive
tests validated in practice, our work can exhibit 1.73× speedup when compared with other state-of-the-art
GPGPU frameworks for SPH simulation.
1. Introduction and motivation

As a popular mesh-free Lagrangian-based method, Smooth Particle
Hydrodynamics (SPH) has been widely employed in computational
fluid dynamics, solid mechanics, and many other physics-based sim-
ulations pertinent to computer graphics. The underlying simulations
requiring well detailed, large-scale, and complicated scenes will un-
avoidably increase a large number of particles, resulting in a signif-
icant time expense. Therefore, much research has been focusing on
the performance improvement of SPH-centric algorithms in computer
graphics.

To date, the rapid advancement of GPU’s computational power,
together with the software evolution of system development kits (e.g.,
CUDA), has led to increased interest in continuing to push forward the
improved efficiency of GPU’s parallel potential. Green [1] represented

∗ Corresponding author.

the earliest CUDA-based implementation of particle system using the
uniform grid. A similar implementation, the earliest GPU based SPH [2]
replaces the Cell Linked List (CLL) with Verlet list (VL) [3] [4], which
can exhibit one to two order-of-magnitude speedup compared with
the equivalent CPU implementation. DualSPHysics [5], an open-source
SPH solver, provides similar implementations with several optimization
strategies. Although these methods are efficient, they have not taken
the full advantage of thread cooperation and hierarchical memory in
GPU. GpuSPHASE [6,7], another open-source 2D SPH solver, presents
a shared memory based implementation. As GpuSPHASE is a Verlet
List based SPH algorithm, GpuSPHASE only loads the target particle
data into shared memory, so the improvement of shared memory is
limited. Later, Goswami et al. [8] first proposed a full shared memory
vailable online 17 August 2020
524-0703/© 2020 Elsevier Inc. All rights reserved.

E-mail address: cbwang@sei.ecnu.edu.cn (C. Wang).

https://doi.org/10.1016/j.gmod.2020.101088
Received 26 April 2020; Received in revised form 26 July 2020; Accepted 10 Augu
st 2020

http://www.elsevier.com/locate/gmod
http://www.elsevier.com/locate/gmod
mailto:cbwang@sei.ecnu.edu.cn
https://doi.org/10.1016/j.gmod.2020.101088
https://doi.org/10.1016/j.gmod.2020.101088


Graphical Models 111 (2020) 101088K. Huang et al.
Fig. 1. The circle denoted by 𝑖 represents target particle. The circles denoted by 𝑗
represent the true neighbor particles, while the circles denoted by 𝑘 represent the false
neighbor particles. In addition, ℎ is the influence radius of target particle.

based method. However, without a reasonable shared memory load-
ing strategy and thread cooperation strategy, their method does not
exhibit better performance than DualSPHysics. Most recently, Huang
et al. [9] proposed a novel general parallel framework (called named
GpuSPHCTA in this paper), which successfully breaks the performance
bottleneck by using thread cooperation and reasonable full shared
memory loading strategy.

In this paper, our ambitious goal is to further improve the compu-
tational performance based on the GpuSPHCTA framework, and at the
same time we also retain the computational accuracy without any sac-
rifice of involved numerical techniques. We first propose a hierarchical
perpendicular uniform grid to arrange world-space particles, and our
method could greatly improve the coherence of particle distribution
and decrease the overhead of thread synchronization. Based on our
novel grid method, we propose an efficient neighbor traversal algo-
rithm, which greatly decreases the access of false neighbor particles.
In addition, we introduce a hierarchical task schedule strategy, which
utilizes different thread groups with different thread size to cater to
the heterogeneous distribution of particles in the simulation space. Our
primary contributions are summarized below.

• A novel hierarchical perpendicular grid for improving the coher-
ence of particle distribution, with a goal to reduce the time cost
of thread synchronization.

• A well designed hierarchical neighbor traversal algorithm, which
can greatly decrease the access time of false neighbor particles.

• A hierarchical task schedule strategy, which can cater to the
distribution of particles in the simulation space, with a goal to
reduce the overload of neighbor particles.

2. Related work

Accompany with the widely used of SPH in physically-based simula-
tions, much research has been focusing on improving the performance
of SPH-centric algorithms by GPU. Here we start by simply introducing
the development of SPH in physically-based simulations, and several
representative implementations of GPU based SPH algorithm will be
provided.

2.1. SPH-based simulations

SPH is firstly proposed for astrophysical problem [10], and then
SPH is extended to several physically-based simulations in computa-
tional physics and computer graphics. The core idea of this method is
2

Fig. 2. The overview of inconsistent neighbor search situation inside tasks. The relative
small circles represent particles, and the bigger circles represent the influence regions
of corresponding particles. The ellipses denoted with 𝑡 represent tasks. Only neighbor
particles inside the influence region are true neighbor particles.

discretizing continuous fields by means of particles and approximat-
ing continuous properties of particles by weighted interpolation over
smoothed functions 𝑊 (𝐱, ℎ) [11]:

𝐴(𝐱𝑖) =
∑

𝑗
𝑚𝑗

𝐴𝑗

𝜌𝑗
𝑊 (𝐱𝑖 − 𝐱𝑗 , ℎ), (1)

where 𝐴(𝐱𝑖) is some consecutive attributes of the particle at position
𝐱𝑖, such as force, 𝑚 is the mass of particle and 𝜌 is particle density.
As shown in Fig. 1, smoothing radius ℎ defines the influence space
within which the contribution from the neighbor particles should be
accumulated for target particle [9].

As a nature mass-conservation and flexible method , SPH has been
widely used to simulate classical fluid flow [12,13]. To efficiently
calculate and access neighborhoods in SPH, uniform grid is widely used
to narrow neighbor space for particles [14]. Based on uniform grid,
GpuSPHCTA [9] and DualSPHysics [5] employ CLL to search neighbor
particles. Although CLL involves more false neighbor particles, this
method is more general compared with VL, which has to maintain
the information of neighbor particles for each target particle with
substantial memory overhead [3,4]. Nevertheless, as mentioned above,
CLL cannot guarantee the coherence of particles due to the atomic
operations. The returned value of atomic operations is random, which
means the index of particles inside each cell is arbitrary [9]. As a result,
the particles in a task might distribute in different regions in a cell.
For example (see Fig. 2), in the center cell, when task 𝑡𝑖 loads the
possible neighbor particles in the left neighbor cells, only the thread of
deep blue particle calculates the contributions from possible neighbor
particles. The other threads of task 𝑡𝑖 have to wait for the thread of
deep blue particle to end. Similarly, when 𝑡𝑖 loads the possible neighbor
particles in the right neighbor cells, the thread of deep blue particle has
to wait for the other threads of task 𝑡𝑖 to finish the calculation. Such a
problem can be avoided if we arrange the deep blue particle into task
𝑡𝑗 . So we need to decompose each cell to locate particles in a more
refined unit space. In recent years, SPGrid, a popular hierarchical grid,
associated with Morton encoding [15,16], is widely used in Material
Point Method (MPM) [17,18] and exhibits better performance than
OpenVDB [19], one of the most popular methods for storing volumetric
data. Moreover, SPH can be also applied to solid simulations [20,21],
as well as the coupling and interaction of solid and fluid [22,23]. In
2014, Ren et al. [24] extended WCSPH for simulating multiple fluid
by a mixture model. And their method was then extended by Yan
et al. [25] and Yang et al. [26] to cover the simulations of solid,
including deformable solid and sand, as well as the transformation of
different materials. In order to simulate incompressible fluid efficiently



Graphical Models 111 (2020) 101088K. Huang et al.
Fig. 3. (a) gives the overview of task division strategy of GpuSPHCTA. The smallest circles represent particles, and the inside number represents the index of particle. All particles
inside a big circle represent a task. (b) gives the overview of memory operations in a thread block. GpuSPHCTA launches a thread block to deal with two tasks, and assigns each
task with a CTA. The dot lines with arrow represent threads. Arrows of solid lines represent the direction of memory requests. The lines, between shared memory and global
memory, shown with different colors, represent the order of memory requests. Blue first, red second, and black third. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
and stably, Bender et al. [27] proposed DFSPH in 2017. In 2019,
Koschier et al. [28] surveyed various aspects of SPH simulations with a
documented tutorial. Inspired by SPGrid, we design a novel hierarchical
grid for SPH algorithm in this paper.

2.2. GPU implementations

Here we introduce GPU based SPH from three perspectives, early
single GPU implementations, CUDA based single GPU implementations
and multi-GPU implementations.

Traditional Single GPU, in 2004, Kipfer et al. [29] and Kolb
et al. [30] proposed the earliest large particle system on GPU, which
can simulate fluid with uncoupled particles. Kolb et al. [31] then pro-
posed a GPU-based dynamic particle coupling method, which is the ear-
liest implementation of SPH on GPU. Harada et al. [32] implemented
the neighbor search process of SPH on GPUs. Their implementation was
a fully GPU-based SPH method. As all of these methods were based on
shader programs and occurring before the appearance of CUDA tool
kit, it was difficult for these methods to well arrange the threads of
GPU or manipulate the hierarchical memory resources. So the GPU’s
computational power was not fully utilized.

CUDA based Single GPU, in 2008, NVIDIA provided a CUDA
based implementation of particle system on GPU [1], and a similar
method [2] was provided in 2010, which is the earliest CUDA based
implementation of SPH. In the same year, Goswami et al. [8] proposed
the earliest full shared memory based method for SPH on GPU. How-
ever, their work did not have a better performance compared with
DualSPHysics [5], a popular parallel framework for SPH, merged with
several optimization strategies proposed by Domínguez et al. [33].
Fluids V.3 [34] uses counting sort algorithm to improve the efficiency
of preprocessing. Xia et al. [35] proposed a new VL on GPU for SPH by
using Quad-tree neighbor searching instead of uniform grid. Although
this method can reduce the redundant computational cost, it cannot
take the full advantage of parallelization on GPU. GpuSPHASE [6,7],
an open-source 2D SPH solver, gives several optimization strategies.
GpuSPHASE tries to use shared memory to reduce global memory
access, but only target particles are loaded into shared memory, so the
performance improvement of shared memory is quite limited. Ohno
et al. [36] subdivided the cells of uniform grid to build VL. Their
method can improve the spatial locality of particles, so as to reduce
the access of false neighbor particles. But this method involves high
overhead of loop iterations, which can greatly reduce the performance
of algorithm. In recent years, the performance of single-GPU based
SPH has come to a bottleneck. In 2019, Huang et al. [9] successfully
3

broke the performance bottleneck through the analysis of hardware
architecture of GPU and taking relatively full use of computational
power on GPU. This method can exhibit a good speedup, especially on
dense particles, and keep the good performance on sparse particles by
merging the traditional efficient method into their framework.

Multi-GPUs, in order to cater to the huge number of particles,
distributing the computations among several GPUs is unavoidable. In
2011, Zhang et al. [37] implemented one of relatively early multi-GPUs
SPH algorithm, using a dynamic load balancing method. The similar
method was used by Hu et al. [38] with some optimization strategies in
load balancing method and communication strategy. In 2012, Rustico
et al. [39] divided the simulation space into different GPUs and kept
a minimal overlapping of sub-domains to ensure each particle can
get all true neighbor particles. Their work was then extended [40]
in 2014. In 2013, Valdez-Balderas et al. [41] also proposed a spatial
decomposition technique based multi-GPUs SPH using Message Passing
Interface (MPI). This work was extended by Domínguez et al. [42] with
an improved MPI, the new work can handle simulations with more than
one hundred million particles. In 2017, an advanced load balancing
scheme for multi-GPUs SPH was proposed by Verma et al. [43], this
method can also scale well for smaller amount of particles. In con-
clusion, research of multi-GPU SPH almost focused on split strategies
and data load balancing methods between different GPUs during these
years. Therefore, the main performance bottleneck is still depending on
the performance of each GPU node.

3. The foundation of our framework

Our framework is based on GpuSPHCTA [9], which is a state-of-
the-art parallel framework. Through designing more reasonable grid
method and task assignment strategy, we significantly improve the
efficiency of SPH algorithms on GPU. We briefly introduce GpuSPHCTA
in this section.

GpuSPHCTA is a uniform grid based method, which divides particles
into several tasks according to the warp-size (32 in current GPUs) for
each uniform grid cell and launches a CTA for each task. Tasks are
arranged in a task array according to the index of grid cell. The core
idea of GpuSPHCTA is reasonably manipulating threads and shared
memory for declining global memory access in an efficient way, as
low-latency shared memory offers much higher bandwidth than global
memory. Fig. 3(a) gives an example of task division strategy in GpuS-
PHCTA (we assume the warp-size is 3 here). All particles in a task
belong to a same cell, so these particles share the same neighbor cells,

which means the neighbor particles loaded by a target particle can be



Graphical Models 111 (2020) 101088K. Huang et al.
Fig. 4. The overview of our hierarchical perpendicular grid. The cuboids colored with red represent target cuboids, which are subdivided into 4 cuboids of next grid level. And
the number represent cuboid index in current grid level. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
also used for other target particles in the same task. Fig. 3(b) gives
the overview of the cooperation strategy of threads and the function of
shared memory. GpuSPHCTA merges 27 neighbor cells into 9 cuboid
cells for decreasing the loop iterations of neighbor loading. Each thread
in the CTA loads a neighbor particle into shared memory according
to the thread index in the CTA. Thus the requested neighbor particles
are stored in consecutive global memory, which means the memory
transactions can be combined in most cases. Then all target particles
load neighbor particles from shared memory for the calculation of
physical properties. With this organization, massive global memory
access can be avoided. In order to further improve the cache hit rate,
GpuSPHCTA arranges two CTAs as a CUDA thread block, which can be
helpful for our task merging strategy. In addition, as traditional parallel
strategy [5] is very efficient when the number of particles in a CTA task
is very small, GpuSPHCTA combines both traditional parallel strategy
and task schedule strategy for taking the full advantage of GPGPU
computational resources. Therefore, GpuSPHCTA is an efficient and
general parallel framework for SPH. The major process of GpuSPHCTA
is summarized in Algorithm 1.
Algorithm 1 The summary of GpuSPHCTA.
1: repeat
2: //preprocessing
3: sort particles
4: calculate new hash value
5: sort particles according to new hash value
6: find the boundary value of particle groups
7: arrange task array
8: //variables calculation
9: if thread block belong to sparse particles then

10: for all sparse particle 𝑖 do
11: read particle 𝑖 from global memory to registers
12: calculate variables of particle 𝑖
13: end for
14: else
15: conduct shared memory based strategy
16: end if
17: until the end of simulation

In GpuSPHCTA, keeping the particles of a task in the same cell is
a very important precondition. However, GpuSPHCTA cannot promise
the coherence of particle distribution inside a cell, because GpuSPHCTA
involves atomic operations in the sorting for particles and the returned
value of atomic operations in CUDA is random. Therefore, the particles
in a cell are disordered, which might increase the overhead of thread
synchronization and decline cache hit rate. Moreover, the disordered
distribution of particles inside one cell makes it quite difficult to
decrease false neighbor particles. In order to reduce such problem, we
propose a novel hierarchical grid method, and we will detail it in Sec-
tion 4.1. As GpuSPHCTA is a CLL based framework, each target particle
has to load all particles in neighbor cells for searching true neighbor
4

Fig. 5. The overview of our encoding method. We first calculate cell index 𝐼 for each
particle. Then we calculate the sub-cuboid index in 𝐿2, 𝐿3 and 𝐿4 cuboid. Finally, we
calculate our new hash value through bit operations according to the cell index and
three sub-cuboid indices.

particles, which can be optimized by reducing the search space in
hierarchical grid, and we will detail it in . GpuSPHCTA is a single-
level task framework, which means each CTA works separately. But we
find that if two consecutive tasks belong to a same cell, such two tasks
always share amount of same neighbor particles, which means loading
neighbor particles for each task separately might result in unnecessary
overloading. In order to reasonably avoid such overloading as much as
possible, we proposed a hierarchical task assignment strategy to cater
to the heterogeneous distribution of particles, and we will detail it in
Section 4.3.

4. Novel hierarchical strategy

First, we will illustrate our hierarchical perpendicular grid. Fur-
thermore, we will introduce our hierarchical neighbor search strategy.
Finally, we will detail our novel hierarchical task assignment strategy.

4.1. Hierarchical perpendicular grid

In SPH, grid is just adopted for narrowing the neighbor space and
there is no data stored in grid nodes. The grid method of SPH should
be efficient for locating neighbor particles. However, both SPGrid
and OpenVDB are tree-structure grid, so it is difficult to combine
27 neighbor cells into 9 cuboids [33] and further decrease invalid
neighbor space in a cache-friendly manner on GPU. We need to ac-
cess each neighbor cell separately, which unavoidably involves more
loop iterations. Consequently, we cannot take the full advantage of
memory consecutiveness. Therefore, we propose a novel hierarchical
grid method associated with a novel encoding method to improve the
coherence of particle distribution and make it easier and efficient to
narrow neighbor space. Different from SPGrid, we decompose each
unit space of different-level grids into four sub-cuboids. With this
organization, we can keep the advantage of uniform grid and improve



Graphical Models 111 (2020) 101088K. Huang et al.
Fig. 6. The overview of perpendicular distribution of particles in the simulation space. The particle data of every four 𝐿4 cubes remain consecutive along the 𝑦-axis in a 𝐿3
cuboid. The particle data of every four 𝐿3 cuboids remain consecutive along the 𝑧-axis in a 𝐿2 cuboid. The particle data of every 𝐿2 cuboid remain consecutive along the 𝑥-axis.
Fig. 7. (a) shows the arbitrary distribution of particles in a 2D-cell implemented with
traditional uniform grid method. (b) shows the ordered distribution of particles in a
2D-cell implemented with our hierarchical grid method.

the coherence of particle distribution. Fig. 4 gives the overview of
our hierarchical grid. For the convenience of illustration, we simply
decompose simulation space into 27 cells (it is named with 𝐿1 cuboid
in this paper) as 𝐿1 grid. The side length of 𝐿1 grid cell is equal to the
influence radius of particles. In 𝐿1 grid level, we inherit the uniform
grid encoding method to identify each grid cell, so our 𝐿1 grid is the
same with traditional uniform grid. In 𝐿2 grid level, we decompose a
cell into 4 cuboids (𝐿2 cuboid) along the 𝑥-axis, and we decompose a
𝐿2 cuboid into 4 sub-cuboid (𝐿3 cuboid) along the 𝑧-axis as 𝐿3 grid.
In 𝐿4 grid level, we decompose a 𝐿3 cuboid into 4 cubes (𝐿4 cuboid)
along the 𝑦-axis. The indices of 𝐿2, 𝐿3 and 𝐿4 cuboid range from 0 to
3, two bits are enough to encode 𝐿𝑥 cuboids. Fig. 5 gives the overview
of our encoding method for on our hierarchical grid. For each particle
with position 𝐏 = (𝑥, 𝑦, 𝑧), we calculate cell (𝐿1 cuboid) index according
to the following formula:

𝐼(𝐏) =
⌊𝑥
ℎ

⌋

+
⌊ 𝑦
ℎ

⌋

⋅𝑋 +
⌊ 𝑧
ℎ

⌋

⋅𝑋 ⋅ 𝑌 , (2)

where 𝑋, 𝑌 are the numbers of cells of the uniform grid in the 𝑥- and
𝑦-axis. According to our encoding method, we can get the coordinate
value by the following formula:

𝐼𝑐 (𝐏𝐜) =
⌊

𝑦𝑐
ℎ𝑐

⌋

+
⌊

𝑧𝑐
ℎ𝑐

⌋

⋅ 𝑟 +
⌊

𝑥𝑐
ℎ𝑐

⌋

⋅ 𝑟2, (3)

where 𝐏𝐜 = (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 ) is the relative position inside corresponding cell,
ℎ𝑐 = ℎ∕𝑟 and 𝑟 = 4. Finally, the new hash value of particles can be
calculated by following formula:

𝐻(𝐏) = 𝐼 ⋅ 𝑟3 + 𝐼𝑐 . (4)

After sorting the new hash value of particles, all particles are then
mapped to 1D memory and Fig. 6 shows the distribution trend of
particles in simulation space. As particle data in different grid levels is
consecutive along different axes and the axes are perpendicular to each
other, the distribution trend in different grid levels is perpendicular.
5

Algorithm 2 Grid Building and Counting Sort.
1: //generate grid information
2: calculate hash value of particle using Eq. (2), (3), (6)
3: 𝐂, 𝐟 ← conduct CUDA atomicAdd operations on particle hash value

4: 𝐎 ← conduct GPU-based prefix sum algorithm on 𝐂
5: //sort particles
6: sort particles according to 𝐂,𝐎, 𝐟
7: rebuild C using Eq. (5)

The purpose of our perpendicular design is for trying to keep the con-
tiguity of particles when we narrow the neighbor space, so as to avoid
massive loop iterations. In addition, with a more refined unit space, our
method can improve the coherence of particle distribution compared
with the traditional uniform grid (see Fig. 7). Our implementation is
summarized in Algorithm 2, where 𝐂 is counting array of particles for
hash value, 𝐎 is offset array of particles for hash value, 𝐟 is the indices
array of particles inside cells and C is counting array of particles for
cells. In order to generate task array, we can rebuild C by the following
formula:

C(𝜀) = 𝐎((𝜀 + 1) ⋅ 𝑟3) −𝐎(𝜀 ⋅ 𝑟3), (5)

where 𝜀 is the cell index.

4.2. Hierarchical neighbor traversal strategy

Algorithm 3 Process of Building Cuboid Cells.
1: for all threads of a CTA do
2: 𝐂𝐞𝐥𝐥𝐩𝐨𝐬 ← get cell position from target task
3: //s is the thread index in CTA
4: if 𝑠 < 9 then
5: locate each thread to cuboid neighbor cell 𝑡
6: //𝑥𝑚𝑖𝑛 is the index of the most left 𝐿2 cuboid
7: //𝑥𝑚𝑎𝑥 is the index of the most right 𝐿2 cuboid
8: 𝐀𝑠 ← get particle offset according to 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥
9: 𝐁𝑠 ← get particle count according to 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥

10: end if
11: if 𝑠 == 31 then
12: 𝐒𝐂 ← get the number of 𝐿2 cuboids in cuboid cell
13: end if
14: syncthreads
15: 𝐟𝑠 ← 0, 𝐮𝑠 ← 0, 𝐥𝑠 ← 0
16: end for

In the process of neighbor traversal, Fig. 2 shows that there are sev-
eral false neighbor particles in neighbor cells. In order to decrease the
access of false particles, some researchers propose VL based methods,
which records all true neighbor particles for each particle. Obviously,



Graphical Models 111 (2020) 101088K. Huang et al.
Fig. 8. The overview of our hierarchical neighbor traversal strategy. The blue circles represent particles. The ellipses represent tasks. The solid red lines represent two connected
particles are consecutive in global memory and both particles should be loaded for the task. The regions colored with yellow, green and blue represent neighbor regions. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
these VL based methods require much more memory space compared
with CLL based methods, but the improved performance is quite lim-
ited. [36] proposed a simple decomposition method to construct VL.
Their method also can be applied to CLL, but without a good or-
ganization of grid, this method would cause high overhead of loop
iterations.

The main purpose of our hierarchical grid method is to efficiently re-
duce the neighbor space for target particles. Based on our grid method,
we propose a novel neighbor traversal strategy, which dynamically
loads neighbor particles in different-level grids according to the distri-
bution and the continuity of particles. Our method can greatly decrease
the access of false neighbor particles with relatively low overhead of
loop iterations. For the convenience of illustration, we demonstrate our
hierarchical neighbor traversal strategy in 2D simulation space. In the
process of generating tasks, we calculate the range of 𝐿𝑥 cuboid index
for each task. In Fig. 8(a), all particles of the target task (circled with
ellipse) are in the second 𝐿2 cuboid of the center cell. According to the
range of 𝐿2 cuboid index, we can narrow the range of neighbor region
in the 𝑥-axis. As the particles are consecutive along the 𝑥-axis, we just
need to calculate the offset value of particles in the most left 𝐿2 cuboid
and the number of particles inside the consecutive region colored with
same color (it is named with cuboid neighbor cell). In this grid level, we
avoid the loop iterations in higher-level grid and decrease the access of
some false neighbor particles. Algorithm 3 has outlined our method of
narrowing the neighbor space in 𝐿2-level grid. 𝐟𝑠 represents the index
of the cuboid neighbor cell, which is being accessed by threads. 𝐮𝑠
represents the count of neighbor particles, which have been accessed
in cuboid cell 𝐟𝑠. 𝐥𝑠 represents the index of 𝐿2 cuboid, which is being
accessed by threads.

In our hierarchical grid, we also can search neighbor particles in
𝐿3 cuboid. The range of 𝐿3 cuboid index of the task is from 2 to 3 (see
Fig. 8(b)). Similarly, according to the range of 𝐿3 cuboid index, we can
further reduce the range of neighbor region in the 𝑧-axis. In 𝐿3 grid
level, reduce search space in the 𝑧-axis might break the continuity of
neighbor particles, which means we cannot load neighbor particles in a
consecutive memory domain. Instead, we need to load the particles in
each 𝐿2 sub-cuboid iteratively, which might result in the unnecessary
waste of computational resources. For example, in Fig. 8(b), there are
only two neighbor particles in the cuboid neighbor cell colored with
pink. In this cuboid neighbor cell, if we search neighbor particles in
each 𝐿2 sub-cuboid iteratively, we only decrease the access of one false
neighbor particle, while a lot of invalid loop iterations are produced.
Similarly, if we simply load neighbor particles in each unit cell, there
are much more invalid loop iterations, which is an unavoidable prob-
lem in the simple decomposition method. Therefore, before reducing
the search space in the 𝑧-axis, we need to consider the distribution of
particles in the corresponding neighbor space. In order to distinguish
6

Fig. 9. The overview of our tasks merging strategy. The blocks colored with the same
color represent these tasks belong to the same cell. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. The overview of different CTAs’ cooperation strategy for different value of 𝑚.

different particle distributions in different neighbor space, we define
a threshold T. Through the comparison of particle count in each big
cuboid neighbor cell and T, we can determine whether to load neighbor
particles in each 𝐿2 sub-cuboid iteratively or directly load neighbor
particles in the corresponding big cuboid neighbor cell. With this dy-
namic strategy ((see Fig. 8(c)), we can reduce the unnecessary overhead
of loop iterations. In addition, with the help of shared memory and
threads cooperation, our method can greatly improve the performance
of GpuSPHCTA. Algorithm 4 has summarized our neighbor traversal
implementation, where GMEM is global memory, SMEM is shared
memory. We will illustrate the influence of invalid loop iterations and
the advantage of dynamic strategy in Section 5.2.

Although we can also reduce the range of neighbor space in the
𝑦-axis, such operation will unavoidably result in much more overhead
of loop iterations, which greatly declines the performance. Through our
experiments, we find that it is sufficient to reduce the range of neighbor
space in the 𝑥- and 𝑧-axis. The main purpose of 𝐿4 grid is to improve
particle coherence.



Graphical Models 111 (2020) 101088K. Huang et al.

1

1

1
1
1
1
1
1
1

2
2

W
𝐾
w
p

1

Algorithm 4 Loading Strategy of Neighbor Particles.
1: for all threads of a CTA do
2: while true do
3: if 𝐮𝑠 == 𝐁[𝐟𝑠]𝑜𝑟 𝐥𝑠 == 𝐒𝐂 then
4: 𝐟𝑠 ← 𝐟𝑠 + 1, 𝐮𝑠 ← 0, 𝐥𝑠 ← 0
5: if 9 ≤ 𝐟𝑑 then
6: break
7: end if
8: end if
9: if cuboid cell 𝐟𝑠 is cut in the 𝑧-axis && 𝐁[𝐟𝑠] > T then
0: 𝐚𝑠 ← get particle offset of 𝐿2 sub-cuboid according to 𝑧𝑚𝑖𝑛,

𝑧𝑚𝑎𝑥, 𝐀[𝐟𝑠] and 𝐥[𝐟𝑠]
1: 𝐛𝑠 ← get particle count of 𝐿2 sub-cuboid according to 𝑧𝑚𝑖𝑛,

𝑧𝑚𝑎𝑥, 𝐀[𝐟𝑠] and 𝐥[𝐟𝑠]
2: if 𝐮𝑠 == 𝐛𝑠 then
3: 𝐥𝑠 ← 𝐥𝑠 + 1, 𝐮𝑠 ← 0
4: if 𝐥𝑠 == 𝐒𝐂 then
5: continue
6: end if
7: end if
8: if 𝑠 < min(32, 𝐛[𝐟𝑠] − 𝐮𝑠) then

19: 𝑝𝑖 ← 𝐚𝑠 + 𝐮𝑠 + 𝑠
20: read particle 𝑝𝑖 from GMEM to SMEM
1: end if
2: 𝐮𝑠 ← 𝐮𝑠 + min(32, 𝐛𝑠 − 𝐮𝑠)

23: else
24: if 𝑠 < min(32, 𝐁[𝐟𝑠] − 𝐮𝑠) then
25: 𝑝𝑖 ← 𝐀[𝐟𝑠] + 𝐮𝑠 + 𝑠
26: read particle 𝑝𝑖 from GMEM to SMEM
27: end if
28: 𝐮𝑠 ← 𝐮𝑠 + min(32, 𝐁[𝐟𝑠] − 𝐮𝑠)
29: end if
30: syncthreads
31: calculate variables of target particle
32: end while
33: end for

4.3. Hierarchical task schedule strategy

With the help of hierarchical perpendicular grid, the coherence of
particle distribution is improved. Consequently, the locality of consecu-
tive tasks is improved. Therefore, two consecutive tasks in the same cell
always share a great part of neighbor particles (we name these tasks as
Task Pair). In GpuSPHCTA, each CTA deals with one task separately,
the overlap of neighbor particles is overloaded for Task Pair, which
is an unnecessary waste of computational resources. So we proposed a
hierarchical task assignment strategy by merging two consecutive tasks
in the same cell into a bigger task. There are two kinds of tasks in
our framework (we name these two kinds of tasks as 𝐾1 task and 𝐾2
task). These two kinds of tasks are launched simultaneously without
any additional time cost of CUDA kernel function launching. And we
will detail our strategy here.

As shown in Fig. 9, the particles of each cell are divided into several
𝐾1 tasks. In order to find the 𝐾1 tasks, which can be merged as 𝐿2 tasks.

e assign a thread for each task pair to determine whether these two
1 tasks can be merged. If such two 𝐾1 tasks belong to the same cell,
e merge the two 𝐾1 tasks into a 𝐾2 task. In our implementation, we
ropose a signal value 𝑚 to denote tasks, if 𝑚 = 1, 𝐾1 task has been

merged; if 𝑚 = 0, 𝐾1 task has not been merged.
As the size of tasks might be different in our hierarchical task

strategy, we should launch CUDA thread blocks with different thread
sizes for catering to different tasks. However, in CUDA model, we
can only launch CUDA thread blocks with same thread size. We thus
use threads merging strategy to construct different thread groups with
7

different thread sizes. As we have recorded the signal value 𝑚 for each
task to determine whether the task should be merged, we can easily
identify different size tasks in different thread blocks. In GpuSPHCTA,
the thread index of each CTA is calculated according to 𝑠 = 𝜏%32,
and the CTA index is calculated according to 𝑤 = ⌊𝜏∕32⌋. In order
to identify different size tasks, we use a new thread index calculation
function in the following form:

𝑠 = 𝜏%32 + 𝑚 ⋅𝑤 ⋅ 32, (6)

where 𝜏 is the thread index of CUDA thread block.
Fig. 10 shows the differences of thread blocks with different values

of 𝑚. If 𝑚 = 0, two CTAs deal with corresponding 𝐾1 tasks separately;
if 𝑚 = 1, two CTAs are merged as 64 threads group; threads in a
new thread group working together to load neighbor particles from
global memory to shared memory (when two tasks in a thread block are
denoted to be merged, the particle distribution range of new task might
be changed, so we need to update the maximum and minimum value of
𝐿2 cuboid index and 𝐿3 cuboid index according to the corresponding
values of merged tasks). Each target particle in the corresponding
thread block loads all these neighbor particles to calculate attributes.
Therefore, our merged task assignment strategy can avoid loading
overlap of neighbor particles. Moreover, our task assignment strategy
can also reduce the overhead of loop iterations, because the new thread
group can load twice the number of neighbor particles in each iteration.
𝐾1 task strategy can reduce the idle threads, and 𝐾2 task strategy can
reduce the unnecessary loading of particles. So our hierarchical task
strategy can well cater to the heterogeneous particle distribution in
different cells. The key components of our framework are summarized
in Algorithm 4

Algorithm 5 The Overview of Our Framework.
1: repeat
2: //preprocessing
3: conduct preprocessing according to Alg. 2
4: merge task pair according to the process of Fig. 9
5: update the range of 𝐿2 and 𝐿3 cuboid index for 𝐾2 tasks
6: //each attributes calculation step
7: generate cuboid cells according to Alg. 3
8: load neighboring particle data according to Alg. 4
9: calculate attributes for target particles
0: until the end of simulation

5. Experimental results and evaluations

In this section, we use six benchmarks implemented with different
SPH algorithms to evaluate our framework (NEW). The comparison
objects are DualSPHysics (TRA) and GpuSPHCTA. The experiments are
performed on different hardware platforms as follows:

• Intel(R) Core(TM) i7 9700 K and NVIDIA Geforce GTX 970
(Maxwell Architecture).

• Intel(R) Core(TM) i7 9700 K and NVIDIA Geforce GTX 1080
(Pascal Architecture).

• Intel(R) Core(TM) i7 9750H and NVIDIA Geforce RTX 2070 (Tur-
ing Architecture).

5.1. Parameter settings and effects

In order to find the correlation between particle number and speed-
up rate of our framework compared with GpuSPHCTA and Dual-
SPHysics, the benchmark we used here is cuboid with constant size,
which means we omit the process of updating the position of particles
for ensuring that the average particle number of either nonempty
uniform grid cells or our 𝐿1 grid cells (it is named with 𝐴𝐶, which

indicates the scale of the number of neighbor particles) keeps constant



Graphical Models 111 (2020) 101088K. Huang et al.
Fig. 11. The scene of dam break shows the hierarchical task structure in our framework. The green particles are arranged into 𝐾1 tasks; The yellow particles are arranged into 𝐾2
tasks; the red particles are dealt with traditional method (DualSPHysics). In our experiments, our framework can exhibit 1.73x speedup compared with GpuSPHCTA without any
compromise of numerical accuracy and sacrifice of simulation detail. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
Fig. 12. Four benchmarks for evaluating the performance of our framework tested
with four different SPH algorithms. Benchmark (a) is ocean wave. Benchmark (b) is
the dropping of bunny rabbits. Benchmark (c) is the interaction of dropping elastic
cubes. Benchmark (d) is the interaction of different miscible fluids.

Fig. 13. The performance results of different frameworks tested with different particle
numbers on different hardware platforms. The frame rate is normalized to the
performance of GpuSPHCTA.

in each frame. The number of particles ranges from one million to
eight million, and 𝐴𝐶 is set to 297. Fig. 13 shows the results of our
experiments, which indicate that the speedup rate of our framework
has no obvious correlation with particle number.

In addition, we use the same benchmark to reveal the correlation
between 𝐴𝐶 and the speedup rate of our framework. Table 1 gives
the key information of the test cases and detailed elapsed time. The
results of our test cases indicate that the speedup rate of our framework
compared with GpuSPHCTA and DualSPHysics is growing with 𝐴𝐶.
Both Table 1 and Fig. 13 show that shared memory based method
(GpuSPHCTA and our method) can exhibit better speedup on RTX
8

Fig. 14. The performance results of our grid method. The frame rate is normalized to
the performance of SPGrid.

Fig. 15. The performance results of dam break tested with different 𝐴𝐶. The frame
rate is normalized to the performance of GpuSPHCTA.

2070 compared with DualSPHysics (our method can exhibit 2.38×
speedup on RTX 2070 tested with case 3). In addition, we find that
the traditional method (DualSPHysics) can exhibit better performance
on GTX 1080.

Overall, the speedup rate of our framework is closely related to 𝐴𝐶,
regardless of particle number. In our test cases, the performance of our
method is the best while the traditional method is relatively slow.

5.2. Improved performance

The experiments mentioned above reveal that 𝐴𝐶 is the key param-
eter. However, the experiments on cuboid with constant size cannot
reveal real performance improvement of our method. 𝐴𝐶 might be
different in each frame, which is the result of the advection of particles.
Thus we need to test our framework with real simulations, and the
benchmark we used here is dam break (see Fig. 11).

First, we compare our grid method with SPGrid [17] on different
GPUs. Fig. 14 shows the results of our experiments, which indicate that
our grid method can obviously exhibit performance improvement if 𝐴𝐶
is relatively small. When 𝐴𝐶 exceeds 125, the performance of our grid
method and SPGrid is about the same. Our grid method can reduce
loop iterations, but the time saved from loop iterations accounts for a



Graphical Models 111 (2020) 101088K. Huang et al.
Table 1
Test case settings and simulation results. The results are the average of the first 640 time steps. Pre is preprocessing overhead. Dfor is the overhead
for force computation. Tot is total simulation overhead.

GPU #particles AC DualSPHysics (ms) GpuSPHCTA (ms) OUR METHOD(ms)

Pre Dfor Tot Pre Dfor Tot Pre Dfor Tot

GTX 970
case 1

8,000,000

64 8.9 510.3 519.3 13.5 331.4 344.9 15.0 326.3 341.3
case 2 125 9.2 990.7 999.9 14.1 665.1 679.2 15.0 576.4 591.4
case 3 297 10.0 2315.2 2325.2 15.6 1626.0 1641.6 15.7 1264.4 1280.1

GTX 1080
case 1 64 8.2 227.7 235.9 10.8 147.2 158 11.6 139.7 151.3
case 2 125 7.9 439.9 447.8 11.1 293.6 304.7 11.8 246.1 257.9
case 3 297 8.3 1015.6 1023.9 12.0 705.3 717.3 12.3 532.5 544.8

RTX 2070
case 1 64 15.9 247.6 263.5 18.5 122.4 140.9 16.6 121.0 137.6
case 2 125 15.8 501.7 517.5 18.8 262.0 280.8 17.6 220.1 237.7
case 3 297 18.3 1171.9 1190.2 21.2 632.8 654.0 17.2 475.0 492.2
Fig. 16. The performance results of neighbor traversal strategies. The frame rate is
normalized to the performance of GpuSPHCTA.

smaller part of the total time when 𝐴𝐶 is increased. Both SPGrid and
our grid can improve the coherence of particle distribution, but our grid
method can make it much easier to reduce neighbor space.

Second, we compare our framework with GpuSPHCTA (the perfor-
mance of GpuSPHCTA is better than DualSPHysics in our experiments).
As the efficiency of GTX 970 is the slowest in our three GPUs, we
will not conduct our next experiments on GTX 970. Fig. 15 also shows
that the speedup rate of our framework is growing with an initial 𝐴𝐶.
As a simulation with initial 𝐴𝐶 exceeding 5000 is rare, we have not
tested our framework with bigger initial 𝐴𝐶. In our experiments, our
framework can exhibit 1.73× speedup.

Third, we test the performance of our dynamic strategy for reducing
neighbor space on RTX 2070. Fig. 16 shows the results of our exper-
iments. Ls represents the method which only reduce neighbor space
by 𝐿2 cuboid index (see Fig. 8(a)); Ld represents the method which
straightforwardly reduce neighbor space by 𝐿2 and 𝐿3 cuboid index
(see Fig. 8(b)); Lh represents our dynamic strategy. In the experiments
whose 𝐴𝐶 is smaller than 120, the performance of Ls is better than
Ld. The reason is that there are several unnecessary loop iterations
in Ld (see the example shown in the red region of Fig. 8(b)), which
indicates that massive loop iterations can obviously decrease the al-
gorithm performance. In the experiments whose 𝐴𝐶 is bigger than
120, the performance of Ld is better than Ls, because the time cost
of additional loop iteration in Ld is smaller than the time saved by
avoiding loading some false neighbor particles. As Lh possesses both the
advantage of Ls and Ld, Lh performs well in all these experiments (T is
set to 90). Moreover, we find that GpuSPHCTA has better performance
when initial 𝐴𝐶 is smaller than 40, which is the result of the more time
overhead of preprocessing in our framework when 𝐴𝐶 is small.

Finally, as our grid method can be easily extended to other tile
sizes, we further explore the influence of different tile settings on RTX
2070, such as 5 × 5 × 5 tile, which is used in the FLIP method [44].
Fig. 17 shows the results of our experiments. The blue line indicates
9

that 3 × 3 × 3 tile can exhibit better performance when the 𝐴𝐶 is
Fig. 17. The performance results of different tile settings. The frame rate is normalized
to the performance of 4 × 4 × 4 tile.

Fig. 18. The performance results of ocean wave simulation. The frame rate is
normalized to the performance of GpuSPHCTA.

relatively small, because smaller tile setting involves smaller overhead
of preprocessing. The red line indicates that 5 × 5 × 5 tile performs
better when the 𝐴𝐶 is bigger than 1000, because bigger tile setting
can decrease more invalid neighbor space. The yellow line shows that
6 × 6 × 6 tile performs worst in our experiments, because the overhead
of preprocessing is significantly increased with tile size. Therefore,
there is a balance between tile size (neighbor space) and the overhead
of preprocessing. 4 × 4 × 4 tile is a reasonable choice.

5.3. Simulation evaluations

To some extent, dam break is a simple physical simulation, and
there are several variants of SPH for some relatively complex simula-
tions. In order to reveal the generalization ability and availability of
our framework, we test our framework with the other four benchmarks
implemented with four different SPH algorithms.

The first benchmark is ocean wave implemented with WCSPH [45]
(see Fig. 12(a)). The initial 𝐴𝐶 of this benchmark is about 1000, and
the number of simulation particles is 17,970,160. Fig. 18 gives the
test results of our framework compared with GpuSPHCTA on different
hardware platforms. It can be seen from Fig. 18 that the speedup rate
keeps going up and going down, because the particles keep splashing



Graphical Models 111 (2020) 101088K. Huang et al.

n

a
f

P
p

Fig. 19. The performance results of dropping bunny rabbits simulation. The frame rate
is normalized to the performance of GpuSPHCTA.

Fig. 20. The performance results of multiple fluid simulation. The frame rate is
ormalized to the performance of GpuSPHCTA.

nd converging, which means 𝐴𝐶 keeps going up and going down. Our
ramework can exhibit about 1.55× speedup.

The second benchmark is the dropping of bunny implemented with
CISPH [46] (see Fig. 12(b)). PCISPH involves much computation
rocess for great incompressibility. The initial 𝐴𝐶 of this benchmark

is about 500, and the number of simulation particles is 1,516,563. The
test results (see Fig. 19) indicate that the change of speedup rate is
relatively small, which is the result of the great incompressibility of
PCISPH. Furthermore, Fig. 19 shows that our framework can exhibit
better speedup on RTX 2070 compared with GTX 1080; our framework
can exhibit about 1.43× speedup on GTX 1080, 1.47× speedup on RTX
2070.

The third benchmark is the mixture of two different fluid im-
plemented with multiple fluid SPH [24] (see Fig. 12(d)). This SPH
algorithm needs to calculate the attributes of different fluids, so the
simulation of this benchmark is complex. The initial 𝐴𝐶 of this bench-
mark is about 500, and the number of simulation particles is 3,169,044.
Similarly, the speedup rate changes with 𝐴𝐶, and finally keeps stable as
the fluid almost keeps constant (see Fig. 20). our framework can exhibit
about 1.47× speedup.

The fourth benchmark is elastic solid implemented with multiple
phase SPH [25] (see Fig. 12(c)), which is the most complex simulation
algorithm in our experiments. The initial 𝐴𝐶 of this benchmark is about
500, and the number of simulation particles is 2,788,192. Fig. 21 shows
the performance of our framework. There is no splash of particles in the
simulation of elastic solid and the deformation of elastic solid is rela-
tively small, which means the change of 𝐴𝐶 is very small. Therefore,
the relative performance of our framework almost keeps stable in this
simulation. Our framework can exhibit about 1.61× speedup on GTX
1080, 1.63× speedup on RTX 2070.

6. Conclusion and future works

This paper has detailed an efficient framework with well designed
hierarchical task assignment and neighbor search strategies in a new
10

hierarchical grid. The framework takes the full advantage of GPGPU
Fig. 21. The performance results of elastic solids simulation. The frame rate is
normalized to the performance of GpuSPHCTA.

and can greatly reduce the cost of computational resources, so as to
further break the performance bottleneck of SPH algorithms based
on GpuSPHCTA. The framework can exhibit 1.73× speedup without
any compromise of numerical accuracy and sacrifice of simulation
detail. Therefore, our method can be applied to most of the existing
SPH algorithms directly. Even though the framework could not exhibit
magnificent speedup compared with GpuSPHCTA, the current solution
is both efficient and of general purpose.

As shown in Fig. 5, we shift the binary code of traditional hash
value (cell index in this paper) to the left by 6 bits, which means
that the counting array of traditional uniform grid used for counting
in the sorting algorithm is expanded by 64 times. As a result, the
sorting cost is unavoidably increased. In addition, we have to maintain
the information of spatial range for computational tasks, so our new
strategies need additional preprocess routines. Thus, the preprocessing
cost is more than that in GpuSPHCTA, which means our framework
might not be suitable for simulations with very few and sparse particles,
whose preprocessing cost occupies a significant portion of simulation
time. Through our tests, we observe that the increased overhead mainly
results from the sorting process. Hence we need to design a much
more efficient GPU based sorting algorithm to further improve the
performance of our framework. Moreover, as shown in Figs. 15 and
16, compared with GpuSPHCTA, the improvement of our framework
is quite significant when 𝐴𝐶 is relatively big. On the other hand,
GpuSPHCTA can exhibit better performance than our method when
𝐴𝐶 is very small. Therefore, we could merge GpuSPHCTA into our
framework to conduct the simulations whose 𝐴𝐶 is very small for
avoiding the performance degradation.

Although we define a threshold T to identify different neighbor
traversal strategies in different neighbor regions, constant T might not
be best suitable to the heterogeneous distribution of particles well,
so we need a better strategy to dynamically change the value of T
for catering to the heterogeneous distribution of particles. Besides, we
wish to design a much more general framework, which not only has a
better fit for SPH algorithms but also could be applied to other particle
systems such as Material Point Method (MPM) in our future work. We
also expect to further utilize the concurrency of CTA to design a novel
particle merging strategy toward the further improved implementation
of a novel adaptive SPH based on GPGPU.

CRediT authorship contribution statement

Kemeng Huang: Conceptualization, Methodology, Software, Visu-
alization, Writing - original draft. Zipeng Zhao: Data curation, Vi-
sualization, Writing - original draft. Chen Li: Methodology, Writing
- review & editing. Changbo Wang: Supervision, Funding acquisi-
tion, Project administration, Validation, Writing - review & editing.
Hong Qin: Supervision, Funding acquisition, Methodology, Validation,

Writing - review & editing.



Graphical Models 111 (2020) 101088K. Huang et al.
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The authors would like to especially thank all reviewers for their
sincere and thoughtful suggestions. This paper is partially supported
by Natural Science Foundation of China under Grants 61532002 and
61672237, National Science Foundation of USA (IIS-1715985 and IIS-
1812606).

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.gmod.2020.101088.

References

[1] S. Green, Cuda particles, NVIDIA Whitepaper 2 (3.2) (2008) 1.
[2] A. Hérault, G. Bilotta, R.A. Dalrymple, Sph on gpu with cuda, J. Hydraul. Res.

48 (S1) (2010) 74–79.
[3] J.M. Domí nguez, A.J.C. Crespo, M. Gómez-Gesteira, J.C. Marongiu, Neighbour

lists in smoothed particle hydrodynamics, Internat. J. Numer. Methods Fluids 67
(12) (2011) 2026–2042.

[4] D. Winkler, M. Rezavand, W. Rauch, Neighbour lists for smoothed particle
hydrodynamics on GPUs, Comput. Phys. Comm. 225 (2018) 140–148.

[5] A.J.C. Crespo, J.M. Domínguez, B.D. Rogers, M. Gómez-Gesteira, S.M. Longshaw,
R.B. Canelas, R. Vacondio, A. Barreiro, O. García-Feal, Dualsphysics: Open-source
parallel CFD solver based on smoothed particle hydrodynamics (SPH), Comput.
Phys. Comm. 187 (2015) 204–216.

[6] D. Winkler, M. Meister, M. Rezavand, W. Rauch, Gpusphase - a shared memory
caching implementation for 2d SPH using CUDA, Comput. Phys. Comm. 213
(2017) 165–180.

[7] D. Winkler, M. Rezavand, M. Meister, W. Rauch, Gpusphase - a shared memory
caching implementation for 2d SPH using CUDA (new version announcement),
Comput. Phys. Comm. 235 (2019) 514–516.

[8] P. Goswami, P. Schlegel, B. Solenthaler, R. Pajarola, Interactive SPH simulation
and rendering on the GPU, in: Proceedings of the 2010 Eurographics/ACM
SIGGRAPH Symposium on Computer Animation, SCA 2010, Madrid, Spain, 2010,
Eurographics Association, 2010, pp. 55–64.

[9] K. Huang, J. Ruan, Z. Zhao, C. Li, C. Wang, H. Qin, A general novel parallel
framework for SPH-centric algorithms, Proc. ACM Comput. Graph. Interact. Tech.
2 (1) (2019) 7:1–7:16.

[10] R.A. Gingold, J.J. Monaghan, Smoothed particle hydrodynamics: theory and
application to non-spherical stars, Mon. Not. R. Astron. Soc. 181 (3) (1977)
375–389.

[11] J.J. Monaghan, Smoothed particle hydrodynamics, Annu. Rev. Astron. Astrophys.
30 (1) (1992) 543–574.

[12] M. Müller, D. Charypar, M.H. Gross, Particle-based fluid simulation for inter-
active applications, in: Proceedings of the 2003 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, San Diego, CA, USA, July 26-27, 2003, pp.
154–159.

[13] M. Ihmsen, J. Orthmann, B. Solenthaler, A. Kolb, M. Teschner, SPH fluids in
computer graphics, in: Eurographics 2014 - State of the Art Reports, Strasbourg,
France, April 7-11, 2014, pp. 21–42.

[14] M. Ihmsen, N. Akinci, M. Becker, M. Teschner, A parallel SPH implementation
on multi-core CPUs, Comput. Graph. Forum 30 (1) (2011) 99–112.

[15] G. Morton, A computer oriented geodetic data base and a new technique in file
sequencing, 1966.

[16] D. Holzmüller, Efficient neighbor-finding on space-filling curves, 2017, CoRR
abs/1710.06384 arXiv:1710.06384.

[17] R. Setaluri, M. Aanjaneya, S. Bauer, E. Sifakis, Spgrid: a sparse paged grid
structure applied to adaptive smoke simulation, ACM Trans. Graph. 33 (6) (2014)
205:1–205:12.

[18] M. Gao, X. Wang, K. Wu, A. Pradhana, E. Sifakis, C. Yuksel, C. Jiang, GPU
optimization of material point methods, ACM Trans. Graph. 37 (6) (2018)
254:1–254:12.
11
[19] K. Museth, VDB: high-resolution sparse volumes with dynamic topology, ACM
Trans. Graph. 32 (3) (2013) 27:1–27:22.

[20] M. Müller, R. Keiser, A. Nealen, M. Pauly, M.H. Gross, M. Alexa, Point based
animation of elastic, plastic and melting objects, in: Proceedings of the 2004
ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Grenoble,
France, August 27-29, 2004, pp. 141–151.

[21] D. Gerszewski, H. Bhattacharya, A.W. Bargteil, A point-based method for
animating elastoplastic solids, in: Proceedings of the 2009 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, SCA 2009, New
Orleans, Louisiana, USA, August 1-2, 2009, pp. 133–138.

[22] R. Keiser, B. Adams, D. Gasser, P. Bazzi, P. Dutré, M.H. Gross, A unified
Lagrangian approach to solid-fluid animation, in: Symposium on Point Based
Graphics, Stony Brook, NY, USA, 2005. Proceedings, pp. 125–133.

[23] N. Akinci, J. Cornelis, G. Akinci, M. Teschner, Coupling elastic solids with
smoothed particle hydrodynamics fluids, J. Visualiz. Comput. Anim. 24 (3–4)
(2013) 195–203.

[24] B. Ren, C. Li, X. Yan, M.C. Lin, J. Bonet, S. Hu, Multiple-fluid SPH simulation
using a mixture model, ACM Trans. Graph. 33 (5) (2014) 171:1–171:11.

[25] X. Yan, Y. Jiang, C. Li, R.R. Martin, S. Hu, Multiphase SPH simulation for
interactive fluids and solids, ACM Trans. Graph. 35 (4) (2016) 79:1–79:11.

[26] T. Yang, J. Chang, M.C. Lin, R.R. Martin, J.J. Zhang, S. Hu, A unified particle
system framework for multi-phase, multi-material visual simulations, ACM Trans.
Graph. 36 (6) (2017) 224:1–224:13.

[27] J. Bender, D. Koschier, Divergence-free SPH for incompressible and viscous fluids,
IEEE Trans. Vis. Comput. Graph. 23 (3) (2017) 1193–1206.

[28] D. Koschier, J. Bender, B. Solenthaler, M. Teschner, Smoothed particle hydro-
dynamics techniques for the physics based simulation of fluids and solids, in:
W. Jakob, E. Puppo (Eds.), Eurographics 2019 - Tutorials, The Eurographics
Association, 2019.

[29] P. Kipfer, M. Segal, R. Westermann, UberFlow: a GPU-based particle engine, in:
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics
Hardware 2004, Grenoble, France, August 29-30, 2004, pp. 115–122.

[30] A. Kolb, L. Latta, C. Rezk-Salama, Hardware-based simulation and collision
detection for large particle systems, in: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS Symposium on Graphics Hardware 2004, Grenoble,
France, August 29-30, 2004, pp. 123–131.

[31] A. Kolb, N. Cuntz, Dynamic particle coupling for GPUbased fluid simulation, in:
Proceedings of 18th Symposium on Simulation Technique, 2005, pp. 722–727.

[32] T. Harada, S. Koshizuka, Y. Kawaguchi, Smoothed Particle Hydrodynamics on
GPUs, in: Proceedings of Computer Graphic, 2007, pp. p. 63–70.

[33] J.M. Domínguez, A.J.C. Crespo, M. Gómez-Gesteira, Optimization strategies for
CPU and GPU implementations of a smoothed particle hydrodynamics method,
Comput. Phys. Comm. 184 (3) (2013) 617–627.

[34] R. Hoetzlein, Fast fixed-radius nearest neighbors: interactive million-particle
fluids, in: GPU Technology Conference (GTC), Santa Clara, CA, 2014.

[35] X. Xia, Q. Liang, A GPU-accelerated smoothed particle hydrodynamics (SPH)
model for the shallow water equations, Environ. Modell Softw. 75 (2016) 28–43.

[36] K. Ohno, T. Nitta, H. Nakai, SPH-based fluid simulation on GPU using verlet list
and subdivided cell-linked list, in: Fifth International Symposium on Computing
and Networking, CANDAR 2017, Aomori, Japan, November 19-22, 2017, pp.
132–138.

[37] F. Zhang, L. Hu, J. Wu, X. Shen, A SPH-based method for interactive fluids simu-
lation on the multi-GPU, in: Proceedings of the 10th International Conference on
Virtual Reality Continuum and Its Applications in Industry, VRCAI 2011, Hong
Kong, China, December 11-12, 2011, pp. 423–426.

[38] L. Hu, X. Shen, X. Long, Research on SPH parallel acceleration strategies
for multi-GPU platform, in: Advanced Parallel Processing Technologies - 10th
International Symposium, APPT 2013, Stockholm, Sweden, August 27-28, 2013,
Revised Selected Papers, 2013, pp. 104–118.

[39] E. Rustico, G. Bilotta, G. Gallo, A. Hérault, C.D. Negro, Smoothed particle
hydrodynamics simulations on multi-GPU systems, in: Proceedings of the 20th
Euromicro International Conference on Parallel, Distributed and Network-Based
Processing, PDP 2012, Munich, Germany, February 15-17, 2012, pp. 384–391.

[40] E. Rustico, G. Bilotta, A. Hérault, C.D. Negro, G. Gallo, Advances in multi-GPU
smoothed particle hydrodynamics simulations, IEEE Trans. Parallel Distrib. Syst.
25 (1) (2014) 43–52.

[41] D. Valdez-Balderas, J.M. Domínguez, B.D. Rogers, A.J.C. Crespo, Towards accel-
erating smoothed particle hydrodynamics simulations for free-surface flows on
multi-GPU clusters, J. Parallel Distrib. Comput. 73 (11) (2013) 1483–1493.

[42] J.M. Domínguez, A.J.C. Crespo, D. Valdez-Balderas, B.D. Rogers, M. Gómez-
Gesteira, New multi-GPU implementation for smoothed particle hydrodynamics
on heterogeneous clusters, Comput. Phys. Comm. 184 (8) (2013) 1848–1860.

https://doi.org/10.1016/j.gmod.2020.101088
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb1
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb2
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb2
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb2
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb3
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb3
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb3
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb3
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb3
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb4
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb4
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb4
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb5
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb5
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb5
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb5
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb5
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb5
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb5
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb6
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb6
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb6
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb6
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb6
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb7
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb7
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb7
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb7
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb7
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb8
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb8
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb8
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb8
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb8
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb8
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb8
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb9
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb9
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb9
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb9
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb9
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb10
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb10
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb10
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb10
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb10
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb11
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb11
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb11
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb14
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb14
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb14
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb15
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb15
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb15
http://arxiv.org/abs/1710.06384
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb17
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb17
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb17
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb17
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb17
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb18
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb18
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb18
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb18
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb18
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb19
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb19
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb19
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb23
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb23
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb23
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb23
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb23
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb24
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb24
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb24
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb25
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb25
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb25
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb26
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb26
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb26
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb26
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb26
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb27
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb27
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb27
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb28
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb28
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb28
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb28
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb28
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb28
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb28
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb33
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb33
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb33
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb33
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb33
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb35
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb35
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb35
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb40
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb40
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb40
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb40
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb40
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb41
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb41
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb41
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb41
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb41
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb42
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb42
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb42
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb42
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb42


Graphical Models 111 (2020) 101088K. Huang et al.
[43] K. Verma, K. Szewc, R. Wille, Advanced load balancing for SPH simulations on
multi-GPU architectures, in: 2017 IEEE High Performance Extreme Computing
Conference, HPEC 2017, Waltham, MA, USA, September 12-14, 2017, pp. 1–7.

[44] M.B. Nielsen, R. Bridson, Spatially adaptive FLIP fluid simulations in bifrost,
in: Special Interest Group on Computer Graphics and Interactive Techniques
Conference, SIGGRAPH ’16, Anaheim, CA, USA, July 24-28, 2016, Talks, ACM,
2016, pp. 41:1–41:2.
12
[45] M. Becker, M. Teschner, Weakly compressible SPH for free surface flows,
in: M. Gleicher, D. Thalmann (Eds.), Proceedings of the 2007 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, SCA 2007, San Diego,
California, USA, August 2-4, 2007, Eurographics Association, 2007, pp. 209–217.

[46] B. Solenthaler, R. Pajarola, Predictive-corrective incompressible SPH, ACM Trans.
Graph. 28 (3) (2009) 40.

http://refhub.elsevier.com/S1524-0703(20)30028-X/sb44
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb44
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb44
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb44
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb44
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb44
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb44
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb45
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb45
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb45
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb45
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb45
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb45
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb45
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb46
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb46
http://refhub.elsevier.com/S1524-0703(20)30028-X/sb46

	GMOD.pdf
	Novel hierarchical strategies for SPH-centric algorithms on GPGPU
	Introduction and motivation
	Related work
	SPH-based simulations
	GPU implementations

	The foundation of our framework
	Novel hierarchical strategy
	Hierarchical perpendicular grid
	Hierarchical neighbor traversal strategy
	Hierarchical task schedule strategy

	Experimental results and evaluations
	Parameter settings and effects
	Improved performance
	Simulation evaluations

	Conclusion and future works
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Supplementary data
	References





