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Figure 1: Applications of PPF in different scenarios. Our method can simulate and visualize the various ductile fracture phenomena for
different elastoplastic materials, including plastic, dough, and multi-layer hamburger.

Abstract
In this paper, we articulate a novel plastic phase-field (PPF)method that can tightly couple the phase-fieldwith plastic treatment to
efficiently simulate ductile fracture with GPU optimization. At the theoretical level of physically-based modeling and simulation,
our PPF approach assumes the fracture sensitivity of the material increases with the plastic strain accumulation. As a result, we
first develop a hardening-related fracture toughness function towards phase-field evolution. Second, we follow the associative
flow rule and adopt a novel degraded von Mises yield criterion. In this way, we establish the tight coupling of the phase-field
and plastic treatment, with which our PPF method can present distinct elastoplasticity, necking, and fracture characteristics
during ductile fracture simulation. At the numerical level towards GPU optimization, we further devise an advanced parallel
framework, which takes the full advantages of hierarchical architecture. Our strategy dramatically enhances the computational
efficiency of preprocessing and phase-field evolution for our PPF with the material point method (MPM). Based on our extensive
experiments on a variety of benchmarks, our novel method’s performance gain can reach 1.56× speedup of the primary GPU
MPM. Finally, our comprehensive simulation results have confirmed that this new PPF method can efficiently and realistically
simulate complex ductile fracture phenomena in 3D interactive graphics and animation.
CCS Concepts
• Computing methodologies → Physical simulation; Parallel algorithms;

1. Introduction

In recent years, the fracture of elastoplastic materials (e.g., iron,
rubber, bread, and cheese, etc.) has been simulated in graphics and

† Z. Zhao and K. Huang contribute equally to this work.
‡ Corresponding author. Email: cli@cs.ecnu.edu.cn.

animation, starting to gain popularity. Such research attempts also
find widespread applications in movies and games industry (thanks
to the magnificent visual effects showcased in distinct physical phe-
nomena). Unfortunately, existing simulation methods still cannot
accurately capture representative and subtle details pertinent to duc-
tile fracture (e.g., elastic-plastic response, localized damage, crack
failure, etc.) due to both the underlying complex physical princi-
ples and the lack of time-consuming and robust numerical analysis.
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Therefore, it is of vital importance to develop a user-friendly and
graphics-efficient simulation framework for ductile fracture based
on correct physical models and GPU optimization schemes. This
paper aims to offer an efficient solution.

In graphics, the mesh-based method, represented by the finite
element method (FEM) [TF88], is popular in fracture simula-
tion for its numerical accuracy and stability. Later on, Hahn et
al. [HW15,HW16] developed the boundary element method (BEM)
to efficiently model the brittle fracture and produce rich details
for cracked surfaces. However, the mesh-based techniques usually
suffer from the time-consuming re-meshing process when severe
deformation is unavoidable. Moreover, some graphics researchers
introduced meshless methods such as smoothed particle hydrody-
namics (SPH) [CWXQ13,LWQ15]. But due to the lack of physics-
accurate constraints, it remains challenging for SPH to deal with
elastic-plastic responses in a stable and robust way. In recent years,
the material point method (MPM) was introduced as a meshfree
method with a background grid based on continuum mechanics
theory, and recent results had shown that MPM not only facilitates
the handling of complex physical models, but also overcomes the
aforementioned problems.

Relevant to the aforementioned numerical techniques, the phase-
field methods become a popular topic most recently. By smoothing
the crack surface into the material, the phase-field helps avoid the
crack interface tracking or re-meshing completely, achieving ex-
cellent results for fracture simulation in both FEM [Bor12] and
MPM [KT17,WFL∗19a]. Nevertheless, in the absence of plastic
treatment, the ductile fracture phenomena, such as necking, are
usually ignored in the existing literature. What is even worse is
that, the phase-field evolution requires an additional iterative opti-
mization process, which makes both the time cost increase and the
memory overhaul unavoidable.

In this paper, our ambitious goal is to develop a novel physics-
based fracture simulation framework for ductile material, which is
further enhanced by advanced GPU parallelization. Towards this
objective, we articulate a new plastic phase-field (PPF) method
coupled with MPM, that could integrate the phase-field fracture
theory and the von Mises yield criterion. Once the stress on the
material reaches a critical threshold, the underlyingmaterial starts to
yield and harden. As this process continues, the sensitivity of phase-
field will increase and make the material more prone to fracture.
Moreover, to maximize the utilization efficiency of GPU memory
and threads, we advocate a novel strategy for multiple calculation
processes in MPM. In particular, our salient contributions in this
paper include:

(1) Plastic phase-field with strain accumulation that overcomes
the limitations of the classical Griffith theory. In order to cap-
ture more complicated phenomena involving ductile fracture,
wemodify the original evolution scheme of the phase-field frac-
ture method with our newly-proposed degradation function and
hardening-related fracture toughness function. In such way, our
PPF can apply the accumulated plastic strain to the evolution
of phase-field, so that the plastic deformation can directly and
accurately drive the material damaging procedure.

(2) Degraded return mapping with the evolution of the phase-
field. Once the material is damaged and deformed, its elastic

response becomesweaker and leads the degraded stress to return
into the yield surface. During this evolution, the yield condition
should degrade accordingly to simulate the complete process of
ductile fracture and prevent the purely elastic failure. Thus we
adopt a degraded von Mises yield criterion, which dynamically
projects the elastic strain to the degraded yield surface. Conse-
quently, when the strain is excessive, we can weaken the elastic
potential energy for all healthy or damaged materials accord-
ingly and capture all the details pertinent to the unrecoverable
deformation, necking, damaging, and crack propagation.

(3) Efficient parallel framework that takes full advantages of
the hierarchical GPU architecture. To maximize the effi-
ciency of thread-level parallelism and utilization of GPU mem-
ory, we first design a thread warp based reduction method that
affords threads to make full use of registers and decrease the use
of shared memory. In addition, we develop a new prefix sum-
mation algorithm, which improves the parallelism of thread
groups and reduces the number of thread blocks. Next, we in-
volve the above schemes in the re-initialization stage and phase-
field solver to build an efficient GPU-centric framework for our
PPF-MPM solver. Based on comprehensive experiments, our
novel algorithms achieve better performance compared with
GPU MPM [GWW∗18].

2. Related Work

Realistic simulation of elastoplastic deformation and fracture has
been studied widely in computational physics and computer graph-
ics. However, ductile fracture remains challenging due to the com-
plex theoretical analysis and unstable numerical algorithm. Here we
will briefly summarize the most relevant previous works.

Elastoplastic modeling based on MPM. The MPM has a dual
view of Eulerian and Lagrangian deformation [SZS95]. After snow
simulation from Disney [SSC∗13], there have been lots of works
that focus on the elastoplastic treatment for MPM. For example,
materials like water [TGK∗17], sand [KGP∗16,TGK∗17,GPH∗18]
and foam [RGJ∗15, YSB∗15] are almost pure plastic and do not
resist shearing, in which the yield criterion is pivotal. However,
some elastoplastic materials require a balance between the elastic
model and the plastic return mapping, such as snow [SSC∗13],
rubber [ZZL∗17, LGL∗19, FLGJ19] and cloth [GHF∗18, JGT17].
Therefore, it is crucial to adopt proper constitutive law and yield
criterion for the intricate modeling of elastoplastic materials.

Fracture modeling. Fracture simulation has been studied for
years in both computational physics and graphics. O’Brien et al.
used FEM for both brittle [OH99] and ductile fracture [OBH02]
simulations due to its great advantages in dealing with shear
and large stress problems [MG04, BHTF07, GMD13]. However,
the re-meshing and post-process are indispensable when solving
large deformation problems [CYFW14, PNdJO14]. Also, BEM
[Ali97, HW16, HW15] was adopted to present the details of
crack surface for the brittle fracture phenomena. In addition, re-
searchers also focused on the meshfree approaches such as MLS-
based method [MG04], SPH method [CWXQ13, LWQ15], MPM
[SSC∗13], and level set method [HJST13]. Recently, Wang et
al. [WDG∗19] applied the softening yield criterion based on MPM
and proposed a visualization scheme for rendering the crack surface.
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Later, Wolper et al. [WFL∗19a] introduced the phase-field fracture
method to MPM.

Phase-field method. The phase-field method is popular in recent
years. Based on Helmholtz free energy functions, Yang et al. de-
veloped a multi-phase method using the Cahn-Hilliard equation to
simulate the natural mixing of different liquid mediums and solid-
liquid phase changes [YCL∗17,YCR∗15]. Similarly, the phase-field
fracture method based on the energy release of the crack surface
naturally avoids topological problems by smoothing the fracture
surface into the material. Based on Griffith’s theory, the mechanics
methods of phase-field are popular because the variational formula-
tion facilitates discretization [BFM00,MHW10]. Lately, Kakouris
et al. [KT17] introduced the phase-field method to the MPM frame-
work and solved it by a staggered scheme that is the same as the
one in FEM [AKDL16]. Wolper et al. [WFL∗19a] also applied
this method into graphics and used the conjugate gradient (CG)
method to solve the phase-field, which produced realistic results
for dynamic fracture of pure elastic materials. However, due to the
lack of tight coupling of the phase-field and plasticity, many ductile
fracture phenomena cannot be well performed. To overcome the
above limitations, our PPF method couples the yield model with the
phase-field of material damage.

GPU optimization. With the improvement of computer hard-
ware devices, parallel acceleration based on the CUDA toolkit has
become a hot research topic in physically-based simulation, such as
GPUSPH [GSSP10,HRZ∗19,HZl∗20] andGPUMPM[GWW∗18].
In GPU MPM, Gao et al. [GWW∗18] optimized the grid-particle
transfer and particle reordering based on SPGrid, and also pro-
vided specific strategies for the numerical calculation, such as
the GPU singular value decomposition (SVD) solver. In the lat-
est GPU-based MPM [WQS∗20], Wang et al. proposed G2P2G
and AoSoA with multiple GPUs, with which the modified MPM
workflow has been greatly accelerated. In this case, the time cost
of processes like reinitialization cannot be ignored compared with
the total time of an MPM step. To facilitate modeling as well as
improve the performance of our PPF-MPM workflow, we focus on
GPUMPM [GWW∗18] and further optimize the reinitialization and
phase-field evolution process.

3. Physics Methods

In this section, wewill detail the theoretical basis of the PPFmethod,
including governing equations, elastoplasticity, and phase-field the-
ory.

3.1. Continuum Mechanics Background

The deformation theory of MPM is defined in the continuum me-
chanics bymappingmaterial points from the reference configuration
Ω0 with position X to the deformed configuration Ωt with position
x as x = φ(X,t). The deformation gradient F is the derivative of
each component of these two configurations as F = ∂φ

∂X (X,t). The
governing functions including mass and momentum conservation:

Dρ
Dt
+ ρ∇ ·v = 0, ρ

Dv
Dt
= ∇ ·σ+ ρg, (1)

where ρ is density, v is velocity, σ is Cauchy stress, g is gravity,
and D

Dt =
∂
∂t +v · ∇ denotes the material derivative.

The energy equation, as the material property, is the decisive
factor for the elastoplastic deformation. Here we use the superscript
e denotes the elastic part of a variable and p for plastic. To model
phase-field fracture, we write the energy density function Ψ as

Ψ = Ψe +Ψp, Ψe = Ψ+(be,Je)+Ψ−(Je),

F = FeFp, σ =
1
Je

∂Ψ

∂Fe
(Fe)T , b = Fe(Fe)T ,

(2)

where Ψ+ is the tensile part of elastic energy density function and
Ψ− is the compression part, be is the elastic left Cauchy-Green
deformation tensor, and Je = det(Fe) is determinant of Fe. In the
following, for brevity, we will omit the superscript e for the elastic
part of variables.

Figure 2: A twisted plastic strip. From top to bottom, the plastic
strip is rotated and pulled.

3.2. Elastoplasticity

3.2.1. Hyperelasticity Constitutive Model

In physics, constitutive relation is the relation between force and
deformation that expresses the macroscopic properties of materi-
als. The construction of constitutive relations depends on stress
tensors and strain tensors [TN04]. In MPM simulations, basic con-
stitutive models include the simplest linear model [DHW∗19], and
the hyperelastic nonlinear model such as Saint Venant–Kirchhoff
model [KGP∗16]. Here we adopt the neo-Hookean constitutive
model [AKDL16] to describe the change of volume and shape con-
veniently. Then we split the energy density function into volumetric
part and isochoric (deviatoric) part:

Ψ = Ψvol +Ψdev,

Ψvol =
κ

2
( J2 −1

2
− log(J)

)
, Ψdev =

µ

2
(
tr(b̄)− d

)
,

(3)

where b̄ = J−2/db, d is the simulation dimension, and material pa-
rameters are bulkmodulus κ and shearmodulus µ. Correspondingly,
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the stress from the neo-Hookean elastic energy can be written as

σ =
1
J
τ, τ = τvol +τdev =

κ

2
(J2 −1)I+ µdev(b̄), (4)

where τ is the Kirchhoff stress, dev(M) = M− 1
d tr(M)I for any

tensor M, τvol and τdev are respectively volumetric and deviatoric
Kirchhoff stress.

Then for the phase-field fracture, we follow the idea of [AMM09,
Bor12] and decompose the energy density as{

Ψ
+ = Ψdev

Ψ
− = Ψvol

J < 0,

{
Ψ
+ = Ψdev +Ψvol

Ψ
− = 0

J ≥ 0. (5)

According the above formulas, we give the elastic potential en-
ergy density after degradation as Ψ̂ = gΨ+ +Ψ−, where g is the
degradation function of phase-field. Also, the stress will be de-
graded accordingly as τ =

(
g ∂Ψ

+

∂F +
∂Ψ−

∂F
)
FT . Then, we record a

history maximum positive energy density from the time 0 to T as
H =maxt∈[0,T ](Ψ

E ,n
+ ) for each material point.

3.2.2. von Mises Plasticity

The plastic treatment is employed to limit elastic potential energy
and make the material adapt to deformation, which is necessary for
the dynamic process of ductile fracture. Here we will introduce the
classic von Mises yield criterion. The yield function is given by

y(τ) = ‖τtrdev‖F −

√
2

6− d
H(α), (6)

where y is the yield surface, τtrdev is the trial deviatoric part of Kirch-
hoff stress, ‖ · ‖F denotes the Frobenius norm, H(α) is the hardening
function and α is the hardening variable. The Lie derivative of the
left elastic Cauchy-Green tensor is given by Lvb = −2γ ∂y∂τ b,where
γ is the flow rate. Then we give the evolution function of α as
Ûα =

√
2

6−d γ [AGDL15,AKDL16]. In the following, we will use an
equivalent plastic strain scalar p= α

αc
to represent the accumulation

of plastic deformation in a material, where αc is the critical value
of α.

s = 1

s = 0

(b)(a) (c)
p = 0

p > 0

Γ Ω0
0

Figure 3: Diagram of fracture surface. From left to right are
the fracture diagram, the phase-field distribution diagram, and the
plastic strain distribution diagram.

3.3. Phase-Field Theory

Here we emphasize the theoretical basis of the phase-field method
for fracture or crack with the variational formulation. Based on
Griffith’s theory of brittle fracture, the phase-field evolution is solved

as a minimization problem of free energy [FM98], which is given
by

W =

∫
Ω0
Ψ̂dX+Gc

∫
Γ

dX, (7)

where W is the total free energy, Gc is the fracture toughness,
Γ is the discontinuous crack set [AGDL15, WFL∗19a]. The first
term in the right hand is the degraded strain energy Ψ̂ = gΨ++Ψ−,
and the second is the fracture surface energy Ws , in which the
integral of the fracture surface is replaced by an approximate volume
integral [FM98,BFM00] as

Ws(s) = Gc

∫
Ω0
(

1
4l
(1− s)2 + l |∇s |2)dX, (8)

where the phase-field value s represents the material state from
healthy (s = 1) to damaged (s < 1), s = 0 denotes the material is
completely broken, and the interface depth of the phase-field frac-
ture is controlled by a length-related parameter l. As shown in Fig.
3, the integral along the crack surface (a) is replaced by the volume
integral of phase-field in (b), which greatly alleviates the computa-
tional difficulties and fits MPM discretization.

Furthermore, in traditional physics literature, the solution for
minimizing Eq. (7) is to bind the phase-field evolution and the force
calculation into an iterative optimization process [Bor12,AGDL15].
In our paper, to ensure the integrity of the MPM framework, we use
the finite differencemethod to discretize the evolution problem from
the derivative of the phase-field (see §4.2 for more details).

Figure 4:Metal plate. The bullets shot at the metal plate and cause
the damage and plastic deformation.

Plastic zone

Healthy material

Phase-field fracture

Figure 5: Crack interface. The interface of fracture is in the plastic
zone.
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Figure 6: MPM workflow with PPF. After traditional P2G transfer, PPF-MPM solves the phase-field as a subsystem. The solid blue lines
denote the additional data flow for PPF.

4. Plastic Phase-Field Method

In this section, we will describe the complete strategy of our pro-
posed PPF method for ductile fracture simulation. First, in §4.1,
we will introduce the overall MPM framework with a PPF sub-
system. Since our PPF method will not bring additional burden to
the phase-field discretization, it can be easily embedded and imple-
mented on the basis of [WFL∗19a]. Second, for the evolution of the
phase-field in §4.2, we use the finite difference method to obtain an
equilibrium equation and derive its weak form [KT17]. Instead of
the staggered iteration optimization in computational physics, we
construct a large system of linear equations and solve it with the
preconditional CG (PCG) method in a few iterations. Third, we will
discuss the proposed fracture toughness function in §4.3, which
introduces plasticity into the evolution of the phase-field. As a re-
sult, the accumulated plastic strain effectively controls the fracture
location and sensitivity as shown in Fig. 5. We also fine-tune the
degradation function to make the degradation more severe in the
case of a violent fracture. Finally, in §4.4, we develop a novel von
Mises yield criterion for our PPF method, which applies degrada-
tion from the phase-field for the yield surface. That is, when the
material is damaged, the yield surface will degrade accordingly for
the continuous crack propagation of ductile fracture.

4.1. MPMWorkflow and Its Generalization for PPF Method

We start from the classic implementation [SSC∗13] and attempt
with both implicit and explicit update schemes [HFG∗18] for the
force computation. Note that we employ the explicit scheme in all
our GPU benchmarks. As illustrated in Fig. 6, we provide the full
PPF-MPM framework from time tn to tn+1, where anMPMparticle
tracks its position x, mass m, velocity v, and deformation gradient
F. Following the governing functions in Eq. (1), we interpolate
the contributions of particles to the backward Eulerian grid using
the APIC [JSS∗15] and MLS-MPM [HFG∗18] transfer schemes.
Note that in the overall document, we use subscripts p for particle
attributes and i for grid attributes. Also, to simplify the formula,
the notation of the quadratic B-spline interpolating function Ni(x)
is simplified as wip = Ni(xnp), ∇wip = ∇Ni(xnp).

(1) Particles to grid (P2G). For mass and momentum, we use
APIC transfer scheme with a velocity-related matrix C as mn

i
=∑

p w
n
ip

mp , vn
i
= 1

mn
i

∑
p w

n
ip

mp
(
vn
i
+Cn

p(xi −xnp)
)
.

(2) Plastic phase-field solver. Here our phase-field solver is a sub-
system as illustrated in Fig. 6. First, the phase-field P2G process
transfers phase-field value from particles to the background grid
as sn

i
=

∑
p w

n
ip

snp/(
∑

p w
n
ip
). Then, we solve phase-field in grid

(see more details in §4.2). Finally, we transfer grid value back to
particles: sn+1

p = max(min(snp,
∑
i w

n
ip

sn+1
i
),0), and update the

degradation function accordingly.
(3) Force computation. We update force and velocity as f∗i =
−
∑

p w
n
ip

Vp
4
∆x2 σp(F∗p,sn+1

p )(xi − xnp), vn+1
i
= vn

i
+∆tm−1

i f∗i ,
where Vp is particle volume, σp is Cauchy stress, and ∗ = n for
symplectic Euler and ∗ = n+1 for backward Euler. At the same
time, we update the maximum tensile energy densityH .

(4) Grid to particles (G2P). Update particles states as vn+1
p =∑

i w
n
ip

vn+1
i

, Cn+1
p = 4

∆x2
∑
i w

n
ip

vn+1
i
(xn

i
−xnp)T , xn+1

p = xnp +
∆tvn+1

p .
(5) Deformation gradient update. The trial elastic deformation

gradient is computed as Ftr
p = (I + ∆tCn+1

p )Fn
p . We update

Fn+1
p = Ftr

p if no yielding. Otherwise, an additional von Mises
return mapping (see §4.4 for more details) is required to project
the elastic strain to yield surface, and the fracture toughness
can be updated accordingly by Eq. (13). Further details of the
algorithm are provided in Appendix A.

Figure 7: Dough slice. Tearing apart a square piece of raw dough.
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(b)(a)

1

2

3

4

Figure 8: Workpiece fracture. (a) From top to bottom, the workpiece is pulled with our PPF method, phase-field fracture without plasticity
[WFL∗19a], von Mises plasticity, and the direct combination of phase-field fracture and classic von Mises plasticity in [WFL∗19a]. Our
method shows necking obviously during ductile fracture. (b) Fracture results of our PPF method, as well as the color distribution of both
plastic strain and phase-field. After crack failure, the workpiece keeps localized deformation and damage.

4.2. Phase-field Discretization of PPF

Here we describe how to calculate our phase-field. From the reg-
ularized formulation in [BFM00], we write the derivative of the
phase-field in Ginzburg-Landau form as

ds
dt
= −M

∂W

∂s
= −M

(
2(

β

β+ p
− θ)sH −Gc(

1− s
2l
+2l∇2s)

)
, (9)

where M is the mobility parameter, β and θ are parameters of degra-
dation function. So Eq. (9) implies that the phase-field evolution is
determined by p andH . In physics, the phase-field fracture method
is often used to solve static mechanics problems, and the right hand
of Eq. (9) without the parameter M needs to be optimized iteratively
until its value is close to zero [AKDL16,BHL∗16]. But in the above
case, the force needs to be calculated in each iteration, which breaks
the traditionalMPM framework. To simplify the problem, we follow
the Galerkin approximation [Bat06] to discretize phase-field evolu-
tion and use M as a parameter to control crack growth. The larger M
is, the easier the fracture phase-field propagates [WFL∗19a]. Then
we give the weak form as∫

V

(
2(

β

β+ p
− θ)H +

Gc

2l
+

1
M∆t

)
swdV +

∫
V

2l(∇s : ∇w)dV

−

∫
V

( sn

M∆t
+

Gc

2l
)
wdV = 0.

(10)
More details about the derivation and implementation refer to
[KT17, WFL∗19b]. Then we discretize Eq. (10) and construct a
linear system that has the same dimension with grid nodes Ng as

As = e,

Ai, j =
∑
p

Vn
p

(
Kqi(xp)qj (xp)+2l

(
∇qi(xp) · ∇qj (xp)

) )
,

ei =
∑
p

Vn
p (

snp
M∆t

+
Gc

2l
)wn

ip,

(11)

where A is the symmetric positive definite coefficient matrix (Ng ×

Ng), K = 2( β
β+p − θ)H +

Gc
2l +

1
M∆t is a coefficient, qi(xp) is the

MLS shape function in grid, s is the vector (Ng ×1) for phase-field

sn+1
i

, and e is the constant vector (Ng×1). In general, with our GPU-
based PCG solver, the evolution of grid phase-field will converge
in a few iterations. We also adopt the mass lumping strategy in
[WFL∗19a] to reduce the computation cost.

4.3. Phase-field with Accumulated Plastic Strain

In computational physics, the ductile fracture is achieved by mod-
ifying and controlling the key parameters of phase-field evolution
[BHL∗16,DAS∗18]. Inspired by the recentworks [AKDL16,YK20],
we first propose a novel degradation function with the influence of
plasticity as

Ψ̂ = g(s,p)Ψ+(b,J)+Ψ−(J),

g(s,p) = (
β

β+ p
− θ)s2 + θ,

(12)

where θ = 0.01 is a minimum residual to prevent the artifacts, and β
is the relaxation parameter of p. Note that we usually set β = 15 to
make sure that p will promote degradation under violent fracture.

0 ps p

Gc
0

Gc

Decrease

Residual value

Figure 9: Fracture toughness. The fracture toughness Gc begins
to decrease when p = ps . As p increases, Gc continues decreasing
until it stops at a residual value.

Thenwe propose a novel fracture toughness function that replaces
the traditional fracture toughness scalar as

Gc(p) =


G0
c p ≤ ps

G0
c(

1− c
exp(p− ps)

+ c) p > ps
, (13)
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ε

Figure 10: Novel von Mises yield condition. (a) The traditional von Mises yield surface and its hardening process. The yield stress is the
initial size of the yield surface and the failure stress is the upper bound. (b) The stress-strain diagram, in which the orange line denotes the
normal hardening process and the red line denotes the fracture process. (c) The normal yield surface and degraded one of the damaged
material.

where G0
c is the initial fracture toughness, ps is a critical plastic

value and c is a residual coefficient. In phase-field evolution, the
smaller Gc is, the more likely the material is to break. As shown in
Fig. 9, once p reaches the critical value ps , Gc begins to decrease.
As a result, the sensitivity of the phase-field will increase with the
accumulation of plastic strain. But to prevent numerical problems,
we control the value of Gc is always higher than the fundamental
residual value. In general, the smaller ps is, the greater plastic effects
on fracture surface damage is. Meanwhile, the smaller c is, the more
serious the final damage state of the fracture surface is. We usually
adapt to materials with different fracture toughness by controlling
ps and c. In this way, our phase-field evolution scheme follows the
plastic hardening accurately, which leads the localized fracture as
shown in Fig. 5.

4.4. Advanced Return Mapping with Degradation

Plastic treatment is another important part of PPF combined with
fracture phase-field. Here we adopt a degraded von Mises yield
criterion [AKDL16, BHL∗16] to keep pace with the evolution of
phase-field. The modified yield function and hardening law are
given by

y(τ) = ‖τtrdev‖F −g

√
2

6− d
H(α), H(α) = σf −

σf −σy

exp(hα)
, (14)

where τtrdev = g(s,p)µdev(b̄tr ), σy is the yield stress, σf =

√
6−d

2 σy
is the failure stress, and h is the hardening parameter that is usually
adjusted according to the yield stress. As shown in Fig. 10 (a),
we update the deformation gradient as Fn+1 = Ftr when the yield
condition satisfies y(τ) ≤ 0. Otherwise, we need to project the elastic
strain to the yield surface, which then grows in size according to the
plastic flow rule, namely hardening. Note that in our PPF method,
the modified yield surface will degrade with the function gwhen the
material is damaged (Fig. 10 (c)). In the following, we will describe
the projection process. According to the Lie derivative in §3.2.2,
the discretization of the deviatoric Kirchhoff stress based on the
associative plastic flow rule [Sim92,SM93] is given by

τn+1
dev −τ

tr
dev = −

2µ
d
g(s,p)∆γtr(b̄tr )

∂y

∂τ
, (15)

Our PPF von Mises plasticityPhase-field fracture Coupling of Phase-field
and von Mises

Figure 11: Comparison of different fracture methods. From left
to right are our PPF method, phase-field method without plasticity
[WFL∗19a], von Mises plasticity, and the combination of phase-
field fracture and classic von Mises plasticity in [WFL∗19a].

where the direction of plastic flow is ∂y
∂τ =

τn+1
dev
‖τn+1

dev ‖
, which leads

the maximum plastic dissipation for associativity, and ∆γ is flow
distance.

To solve Eq. (15) conveniently, we focus on the principal space.
The SVD of deformation gradient is F =UΣVT . The Hencky strain
and the corresponding Kirchhoff stress are given by

ε̂i = log(Σii), τ̂ = Cε̂, (16)

where C = 2µI+ λ11T is the elastic modulus tensor, 1 is all ones
vector, and M̂ denotes the eigenvalues vector of a matrix M. So
our main task is to solve ε̂n+1 now. First we get a trial Kirchhoff
stress τ̂tr from F̂tr . Note that τ̂n+1 and τ̂tr have the same direc-
tion. Combining the plastic flow Eq. (15) and the projected yield
condition y(τ̂n+1) = 0, we have

‖τ̂trdev‖ −g

√
2

6− d
H(αn +

√
2

6− d
∆γ)−

2µ
d
g∆γtr(b̄tr ) = 0. (17)

The above equation can be solved efficiently with the classic New-
ton method. Once we get ∆γ, the plastic variables can be updated
immediately as αn+1 = αn +

√
2

6−d∆γ, pn+1 = αn+1

αc
. Then we sub-

stitute ∆γ into Eq. (15), and the strain can be projectd to the yield
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surface:

τ̂n+1 = τ̂n+1
dev +

1
d

tr(τtr )1, ε̂n+1 = C−1τ̂n+1. (18)

Finally the deformation gradient Fn+1 can be updated accordingly
with Eq. (16). Therefore, in the above plastic treatment, we multiply
the yield surface by the degradation function, which changes yield
surface adaptively for materials with different damage degrees and
prevents the purely elastic failure. In this manner, we achieve the
the tight coupling of phase-field fracture and plasticity, and produce
better visual results for ductile fracture than the simple combination
in [WFL∗19a].

To summarize, our PPF method combines phase-field and plastic
treatment, and tracks the variations of them.When an object deforms
continuously, plastic strain accumulates locally, and the sensitivity
of the phase-field increases. As a result, the cracks begin to appear,
and the material damage occurs. Then our degraded yield surface
continues to limit the elasticity of the damaged material until the
material failure. Here we compare our method with other fracture
approaches in Fig. 8 and Fig. 11. Our PPF method breaks through
the limitation of Griffith’s theory to accurately predict local fracture,
with which we can observe the apparent phenomena of elastoplastic
deformation, necking, and crack in ductile fracture.

5. GPU Optimization

In each time step of the PPF-MPM framework, there are many
time-consuming processes, such as preprocessing, implicit solver,
and phase-field evolution. Recently, Gao et al. [GWW∗18] have de-
veloped efficient strategies forMPMsimulation. First, they designed
a warp-level reduction summation algorithm to decrease the write
hazard within a SPGrid cell [SABS14,GWW∗18], which actually
improved the performance of P2G process. Second, the particles
in MPM need to be reordered with the histogram sorting algorithm
and re-mapped to the corresponding grid space at the reinitialization
process of each time step. In these processes, the prefix summation
algorithm is vitally important. GPU MPM directly calls the func-
tions in the trust library of CUDA, which is efficient compared with
other implementations, especially when the array is quite large. Al-
though they have developed suitable solutions, there is still ample
room for improvement. Here, we will introduce our novel reduction
strategy, prefix summation algorithm, and their generalization in
our PPF-MPM framework. We will also provide benchmarks for
proving the effectiveness of our methods.

5.1. Efficient Reduction Algorithm based on CUDAWarps

To take the full advantages of memory hierarchical architecture
in GPGPU, we design a much more general and efficient parallel
reduction algorithm. As shown in Fig. 12 (for the convenience of
illustration, we assume the size of a thread block (light blue) is
8, and warp size is 4), in each iteration, the data is loaded from
global memory to registers (dark blue blocks) first, then it can be
reducted in a warp by CUDA function shfl_down. Second, if the
number of warp in a thread block is more than one, each reduction
result of a CUDA warp will be transferred to shared memory for
the reduction on full thread block. Finally, the data is loaded back
to global memory for the next iteration until we finish the reduction

GMEM

SMEM

Threads

Result

Ite
ra

tio
n 

k-
1

Iteration k-2

Iteration k

max

Figure 12: The iteration procedure of our reduction algorithm.
Red lines denote the synchronous process, and dark blue blocks are
registers. GMEM is the global memory, while SMEM is the shared
memory.

Table 1:CFL condition benchmarks. The comparison between our
method, the corresponding method in GPU MPM (best and worst
case), and the algorithm for finding the maximum value in culbas
library of CUDA.

# GPU MPM cublas library Ours Speedupbest worst
10K 0.050 0.072 0.05621 0.00700 7.14×
100K 0.161 4.040 0.06480 0.01055 15.2×
1M 0.243 46.08 0.07034 0.01772 13.7×
5M 0.285 234.3 0.11194 0.05999 4.75×
10M 0.302 470.0 0.15568 0.10901 2.77×

for the full array. Moreover, we detail the implementation of each
iteration in Alg. 1, where W is the CUDA warp (Wtid is the thread
ID in a CUDA warp, Wn is the warp number, and Wid is the warp
ID), and Tid is the thread ID.

In the algorithm of MPM, to make the calculation accurate and
avoid numerical problems, the time step ∆t should be calculated
under CFL restriction in the reinitialization of each timestep. In this
process, we need to find the maximum velocity of the particles in
the simulation system, in which the time overhead cannot be ignored
especially when the particle number is relatively small. Therefore,
we apply our advanced reduction algorithm to the above process
and document the time cost of our method and other correspond-
ing algorithms in Table 1. For this process, GPU MPM employs
an efficient max value finding algorithm based on CUDA atomic
operation, but it lacks stability as their method is quite slow when
each value of the array increases with index. Our approach is stable
and efficient with the acceleration ratio from 2.77× to 15.2× com-
pared with the best case of the method in GPUMPM.Moreover, our
reduction algorithm can be also applied in some other pivotal pro-
cesses, such as implicit solver and phase-field evolution, in which
the PCG solver involves a lot of summation or maximum-finding
operations.
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Algorithm 1 Reduction Algorithm Based on CUDA Warps
1: procedure Reduction
2: Wtid = Tid%32, Wid = Tid/32, stride = 1
3: Wn← Calculate the number of warp
4: temp← Load from shared memory to registers
5: while stride < 32 do
6: Conduct data operations
7: stride = 2× stride
8: if Wid = 0 then
9: Transfer data from registers to shared memory
10: Synchronization
11: if Tid ≥Wn then
12: return
13: if Wn > 1 then
14: temp← Load from shared memory to registers
15: stride = 1
16: while stride < Wn do
17: Conduct data operations
18: stride = 2× stride
19: if Tid = 0 then
20: Transfer data from registers to global memory

Table 2: Prefix summation benchmarks. The comparison of time
cost (ms) between our method and the corresponding algorithm in
GPU MPM.

Particle # trust library Ours Speedup
10K 0.048 0.010 4.8×
100K 0.052 0.018 2.9×
500K 0.057 0.026 2.19×
1M 0.067 0.045 1.49×
2.5M 0.094 0.093 1.01×
3M 0.102 0.109 0.94×

5.2. Optimized Prefix Summation Algorithm

In traditional GPU algorithms, direct thread mapping may cause
many threads idle in parallel computing, which will unavoidably
decrease the parallelism of thread groups and increase the number
of thread blocks. To avoid this situation, we propose a new prefix
summation algorithm, which makes each thread correspond to con-
tinuous computation tasks, so as to promise the high parallelism of
thread groups and reduce the number of thread blocks.

Here we illustrate the data flow of the summation process in Fig.
13 and assume the size of the thread block is 2. First, the data in
GMEM1 is loaded into the shared memory of each thread block,
and then will be reducted, in which the mapping functions are

L1 = Tid +Gid ×2S−1, L2 = 2S ×Gid +2S−1 −1,

s.t. Gid =
Tid

2S−1 +1, L1 < 2×Bs,
(19)

where L1 and L2 is the location of the target data of a thread in
shared memory, S is reduction depth of a thread block, Gid is
the group ID, and Bs is the block size. Note that our mapping
functions map threads to the continuous computation tasks. Then
the data is transferred back to GMEM1, and the summation is

GMEM1

GMEM1

Step 1

Step 2 Step 3

GMEM2

SMEM
S=1

S=2

S=1

S=2

max

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 2 3 4

4 4 4 4

4 8 4 8

4 8 12 16

1 2 3 4 1 2 3 4 1 2 3 4

1 1 1 11 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1

1 2 1 2

1 2 3 4

1 1 1 1

max

max 1 2 3 41 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

max 1 2 3 4

4 8 12 16

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

max 5 6 7 81 2 3 4 9 10 11 12 13 14 15 16 17 18 19 20

4 4 4 4

max4 4 4 4

max4 8 12 16

max16

Figure 13: Optimized prefix summation algorithm. The orange
arrows denote the merge direction of the data stream. GMEM1 and
GMEM2 are two independent parts of global memory.

Figure 14: Pancake. A steamed pancake is torn apart.

recorded in GMEM2. Second, we conduct the same operations on
GMEM2 to get the offset of each thread block (the offset of the
first block is always 0). Finally, we add each data in GMEM1 with
the corresponding offset value in GMEM2, so as to get the prefix
summation result on the total array.

We give the benchmarks in Table 2, in which we compare our
method with trust library of CUDA. Note that our method is better
when the particle number is less than 2.5 million (most of the
simulation scenarios). So in our implementation, we use our method
for less than 2.5 million particles and trust library for more than 2.5
million particles. Benefiting from the performance improvement
from frequent prefix summation operations in PPF MPM, our GPU
optimization strategy shows significant speedup in our experiments
where the array is usually less than 2.5 million.

6. Results

We evaluate the effectiveness of our PPF method by a number
of ductile fracture simulations. Our demos were performed on a
desktop with Intel Core i7-9700K CPU at 3.60 GHz and NVIDIA
GTX 2080TI. The parameter settings of the PPF method and the
performance statistics are given in Table 3.

First of all, in Fig. 11, we show the comparison between our
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Table 3: Parameters and performance. The parameters of each scenario and the computation time on GPU using explicit update for velocity.
Scheme denotes the integration scheme on CPU. E is the Young’s modulus and ν is the Poisson ratio.

Scene Particle # Grid domain ∆tstep ∆t f rame Scheme
Material Phase-field von Mises Time (ms)/step
E ν Gc M ps c αc σy h Preprocess MPM workflow Total

(Fig. 2) Strip 1.03M 3843 1×10−4 1/60 explicit 1000 0.4 20 15 0.01 0.1 0.1 100 2 2.381 4.342 6.723

(Fig. 4) Metal plate 500K 2563 3.75×10−5 1/30 explicit 20000 0.3 200 15 0.001 0.02 0.01 14000 1 2.281 2.795 5.076

(Fig. 7) Dough slice 270K 1283 1.5×10−4 1/50 implicit 1000 0.3 15 30 0.001 0.05 0.02 200 2 2.103 1.985 4.088

(Fig. 8) Workpiece 449K 2563 1×10−4 1/60 explicit 1000 0.4 25 15 0.01 0.1 0.02 120 2 2.233 2.631 4.864

(Fig. 14) Pancake 596K 2563 5×10−5 1/100 implicit 1000 0.3 50 15 0.01 0.1 0.02 200 2 2.326 2.868 5.194

(Fig. 17) Wheel 1.30M 3843 3.75×10−5 1/120 implicit 1500 0.3 80 20 0.001 0.01 0.008 600 5 2.413 5.368 7.781

(Fig. 18) Rubber table 801K 2563 1×10−4 1/100 explicit 15000 0.3 300 20 0.001 0.01 0.01 10500 25 2.362 3.541 5.903

σ  = 300y

σ  = 50yσ  = 5y σ  = 100y σ  = 300y σ  = 1000y σ  = 5000y

G  = 60c
0

0 0 0 0 0G  = 10c
0G  = 0.5c G  = 60c G  = 150c G  = 500c G  = 3000c

Figure 15: Results of different parameters for PPF. By controlling
the size of the yield surface σy and the initial fracture toughness
value G0

c , our method shows various artistic effects during ductile
fracture.

method, purely elastic phase-field fracture method [WFL∗19a], the
traditional von Mises model and the simple combination of phase-
field fracture and von Mises plasticity [WFL∗19a], as well as the
visualization result of the phase-field and the accumulation of plas-
tic strain. Then we also provide the 3D comparison in the tensile
fracture experiment in Fig. 8. As shown in the right sub-figure, our
method demonstrates the fracture toughness and irreversible plastic
deformation during damage more realistically. However, the pure
phase-field method (workpiece 2) [WFL∗19a] only shows the re-
lease of fracture energy. After the material is damaged, the whole
material returns to its original state. For the classical von Mises
yield criterion (workpiece 3), the material will fracture directly
when the elastic strain exceeds the threshold. We also conduct the
simple combination of phase-field method and plastic treatment
(workpiece 4) [WFL∗19a], with which we can hardly capture the
plastic necking. As a result, our method has apparent advantages in
capturing the complete phenomena of ductile fracture.

In Fig. 15, we provide the visual effects of different parameter
settings for our PPF method. The larger the Gc value, the less
sensitive the phase-field, and the Gc value will decrease with local
plastic deformation, so the initial value G0

c needs to be moderate.
For the yield stress σy , we advocate adjustments based on solid
material properties. The higher the yield stress, the more difficult
plastic accumulation will occur. So we need to adjust it to match
the changes in the phase-field, so as to simulate ductile fracture
continuously. By the way of parameter control, our method can

be employed for the simulation of a wide range of elastoplastic
materials.

Moreover, we present several examples with different patterns of
external force. In Fig. 2, we twist and pull a plastic strip, where the
plastic deformation of the strip in rotation and necking in pulling
cannot recover. Then we demonstrate the tearing effects of flour
food in Fig. 7 and Fig. 14 , which resemble viscoelastic materials
and are highly plastic. While in Fig. 18, an iron ball pierces the
table and the local damage caused by the fracture is quite severe.
Obviously, our method can produce various visual effects and crack
patterns for ductile fracture.

To further validate the robustness of our method, we simulate
a high-strength plastic plate penetrated by high-velocity bullets in
Fig. 4 and severe material damage occurring under squeezing in
Fig. 17. At last, Fig. 1 showcases the ductile fracture of complex
multi-material hamburger in the middle sub-figure. All the above
examples have proven our method will not encounter numerical
fracture under extreme situations with high velocity and pressure.

On the other hand, in order to verify the effectiveness of our GPU
optimization strategy, we have already presented two benchmark
tests for our strategy in §5. Since our approach accelerates the
MPM preprocessing and phase-field evolution, it can be combined
with recent acceleration methods for MPM workflow in [WQS∗20,
GWW∗18] to further improve the efficiency. Besides, we benchmark
the overall PPF-MPM and traditional MPM in Fig. 16, and our
optimization scheme can reach 1.10 ∼ 1.56× speedup. Also, for the
demos shown in our paper, we document the average time cost of
a single time step for each scenario in Table 3. Benefit from the
parallel acceleration, our approach works well in general cases and
mainstream computational platforms.

Limitations.We developed a novel PPF method and an efficient
GPU optimization scheme, with which we could simulate various
ductile fracture phenomena and accelerate the entire PPF-MPM on
GPU. However, there are still several limitations pertaining to the
proposed framework. The phase-field fracture method will cause
unexpected damaging results under compression, and the present
yield model is not suitable for brittle materials. As a result, our
method cannot simulate more violent crack and breakage phenom-
ena for brittle fracture. It would be necessary to design additional
constraints for the phase-field evolution rather than simply mod-
ifying the underlying physical properties. In addition, the current
GPU acceleration scheme is most applicable in the preprocessing
of MPM. As the number of particles increases significantly, the
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0
100K 500K

P1 (our) P1 (GPU MPM) P2 (our) P2 (GPU MPM)

1

1.56

1.18
1.31 1.26 1.16 1.11 1.10

1M 3M

P1 P21.49

Figure 16: Benchmark experiments. The comparison between our GPU optimization strategy and GPU MPM. We present four groups of
experiments with different numbers of particles and the normalized acceleration ratio. In each group, we present two comparative experiments
of our PPF-MPM (P1) and traditional MPM with neo-Hookean model (P2).

Figure 17: Wheel. A squashed wheel.

Figure 18: Rubber table. A rising iron ball causes the plastic table
top to crack.

preprocessing time will account for reduced percentage of the sim-
ulation time, and the enhancing effect of our optimization strategy
would be less significant.

7. Conclusions and Future Works

In this paper, we have detailed a novel plastic phase-field method
that couples the fracture phase-field theory with vonMises yield cri-
terion for ductile fracture simulation, whose performance was fur-
ther enhanced by GPU optimization. Our new method involves the

novel hardening-relevant degradation function and fracture tough-
ness function, based on the assumption that the accumulation of
localized unrecoverable plastic deformation will increase the sensi-
tivity of the fracture phase-field. We followed the associative flow
rule and adopted a novel degraded von Mises yield criterion to
accommodate the deformation state of healthy or damaged materi-
als. To integrate the aforementioned physics model in the temporal
domain, we employed a PPF subsystem in the MPM framework,
which accurately manifests the unique elastoplasticity phenomena
during ductile fracture, including necking, crack propagation, and
failure. In addition, a GPU optimization scheme that takes the full
advantages ofGPUhierarchical architecturewas adopted to improve
our method’s numerical performance and maximize the potential of
GPU threads and memory. Our extensive experimental results have
confirmed the effectiveness and efficiency of the proposed method.

At present, we restrict that H can only increase during simu-
lation, but once this limit is broken, the material will heal if the
tensile strain of the damaged material decreases. Therefore, by
modifying this constraint, more complex dynamic fracture phe-
nomena during intermediate states of the damaged materials could
be simulated using the different processes of healing and damage
of the materials. Besides, we plan to devote our efforts to the ex-
ploration of more meaningful plastic models (e.g., Cam-Clay based
models) to achieve better visual realism for more dramatic natural
phenomena such as avalanche and landslide, in which the phase-
field could help exhibit the small-scale details of collapse and soil
flow. The plastic models can be solved using either the associa-
tive or non-associative flow rule for many plastically deforming
materials. In order to ensure physical accuracy and visual realism,
we choose the associative flow rule for our von Mises plasticity,
with which the strain can be projected onto the yield surface ac-
curately. However, for complex yield surfaces such as Drucker-
Prager and Cam-Clay, the projection optimization using the associa-
tive flow rule is quite complex and time-consuming. In this case, we
tend to choose the non-associative flow rule to ensure the interaction
performance and algorithm robustness, and satisfy the requirements
of graphical applications in our future work. Furthermore, AoSoA
and G2P2G [WQS∗20] can be applied in our GPU framework to
further decrease the time consumption of MPM workflow, so as to
improve the speedup rate of the entire MPM algorithm.
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Appendix A: Pseudocode

Here we provide the pseudocode of PPF-MPM , including phase-
field evolution and plastic processing.

Algorithm 2 PPF-MPM
1: procedure MPMP2G
2: for each grid node do
3: mn

i
=

∑
p w

n
ip

mp

4: vn
i
= 1

mn
i

∑
p w

n
ip

mp
(
vn
i
+Cn

p(xi −xnp)
)

5: procedure PPFPhaseFieldSolver
6: //Update fracture toughness
7: for each particle do
8: if p > ps then
9: Gc = G0

c(
1−c

exp(p−ps )
+ c)

10: //Phase-field P2G
11: for each grid node do
12: sn

i
=

∑
p w

n
ip

snp/(
∑

p w
n
ip
)

13: //Solve phase-field
14: Construct As = e as Eq. (11) and solve it with GPU-based

PCG
15: //Phase-field G2P
16: for each particle do
17: sn+1

p =max(min(snp,
∑
i w

n
ip

sn+1
i
),0)

18: g(s,p) = ( β
β+p − θ)s

2 + θ

19: procedure ForceComputation
20: if symplectic then
21: fn

i
= −

∑
p w

n
ip

Vp
4
∆x2 σp(Fn

p,s
n+1
p )(xi −xnp)

22: else if implicit then
23: fn+1

i
= −

∑
p w

n
ip

Vp
4
∆x2 σp(Fn+1

p ,sn+1
p )(xi −xnp)

24: Update grid velocity
25: procedure MPMG2P
26: for each particle do
27: vn+1

p =
∑
i w

n
ip

vn+1
i

28: Cn+1
p = 4

∆x2
∑
i w

n
ip

vn+1
i
(xn

i
−xnp)T

29: xn+1
p = xnp +∆tvn+1

p

30: procedure DeformationGradientUpdate
31: for each particle do
32: Ftr

p = (I+∆tCn+1
p )Fn

p

33: Traditional MPM step with return mapping
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